
AD-Al58 299 LABORATORY FOR COMPUTER SCIENCE PROGRESS REPORT 21 JULY I U
83-JUNE SAiUI MASSACHUSETTS INST OF TECH CAMSRIDGE LAB

OJNCtASS|F IED FOR COMPUTER SCIENCE U DEITOUlOS JUN 84

II IIIIIjIIn

IIIIIIIIII
llllllllllhl
llllllllllhhl

1' - *oI315&2 111112-5

| IIV

54 1"1-

111111 14O

16

125 4 1111 1

Th!S cPj-c I'q. 11? (1 ,'~

r ,-Tpiblic relacise an~d sale; its
dLitribution i3 unlimited.

- LUI
LE CT0

AUU 2 3198500

Massachusetts Laboratory for
Institute of
Technology Computer Science
July 1983- Progress Report
June 1984

21

TEf

-2 1935

AppgoviD FOR PUJBLIC I-ETSAS3
DISTRIBUTICM N LIMITE.D

The work reported herein was carried out within the Laboratory for Computer
Science, an MIT interdepartmental laboratory. During 1983-84 the principal financial
support of the Laboratory has come from the Defense Advanced Research Projects
Agency (DARPA). DARPA has been instrumental in supporting most of our research
during the last 21 years and is gratefully acknowledged here. Our overall support
has come from the following organizations:

* Defense Advanced Research Projects Agency;

" Department of Energy;

" National Institutes of Health, under National Library of Medicine;

" National Science Foundation;

" Office of Naval Research;

* United States Air Force, Office of Scientific Research;

" MIT controlled IBM tund , under an IBM/MIT joint study contract;

Other support of a generally smaller level has come from Coleco, Control Data
Corporation, Honeywell, Harris Corporation, NASA, and Siemens Corporation.

Final iambtly and iproductlion of hiis report was done by Paula Vencini with ssiqstance from the support taff of each research

goup.

I7

TABLE OF CONTENTS.

y INTRODUCTION 1
CLINICAL DECISION MAKING, 5

1. Overview and Summary . 7
-- 2- ttcaDLf-ision Nde Project 10

3. Explanation and Justification by Expert Programs 14
4. Development of Tools for Clinical Decision Analysis 20

COMPUTATION STRUCTURES' 29
/1. introduction 30

2. Data Flow Processing Element 30
3. Program Transformation 31
4. Logic Design Methodology 32
5. Integrated Circuit Design and Fabrication 33
6. Performance Studies 34
7. General Purpose Data Flow Computing: The Vim Project 35
8. Vim Structures 35
9. The Vim Type System 36
10. Backup and Recovery Issues in Vim 37

_CQMPUTERYSSTEMS AND COMMUNICATION 43
1. Introduction -- 44

2. Inter-Organization Networks 44
3. Local Area Network Technology 47
4. Network Services 50

DISTRIBUTED COMPUTER SYSTEMS' 55
1. Introduction 56
2. Swift 56
3. Distributed Architectures for Mail 61
4. Network Routing and Resource Control 63
5. Distributed Name Management 64
6. Checkpoint Debugging 65

EDUCATIONAL COMPUTING% 69
T lnfiouctonr -. 70

2. Boxer 70
3. The Educational Context 76
4. Cognitive Studies 78

FUNCTIONAL LANGUAGES AND ARCHITECTURES 83
1. Introduction 85
2. Tagged Token Dataflow Project 8

3. The Multiprocessor Emulation Facility 96

4. Related Topics 101
IMAGINATIVE SYSTEMS' 1111

t1. introduction 112
2. The Boston Community Information System 112
3. Advanced Graphics Support for User Interfaces 115
4. Partial Evaluation and Programming Language Design 116

INFORMATION MECHANICS 119
1 ntroduction 120
2. A Mature Version of the Cellular Automaton Machine 120
3. A New Class of Cellular Automata 120
4. Parallel Computation of the Dynamics of Distributed Systems 121
5. Discrete Replacements 121
6. The QCD Machine Project 121
7. A Workshop on Physics and Computation 122

MESSAGE PASSING SEMANTICS' 125
1. Open Systems-- 126
2. Descriptions of Behavior 126
3. An Example 127
4. Message Passing Semantics 130
5. Limitations of Descriptions 130
6. Taking Action 132
7. Related Work 135
8. Conclusion 135

PROGRAMMING METHODOLOGYJ 141
1. Introduction . _ 142
2. Implementation 142
3. Orphans 151

4. Specification and Implementation of Atomic Types 157
5. Replication 165

PROGRAMMING TECHNOLOGY 177

1. Introduction ...- - - 178
2. MIM Compiler Development 178
3. MIM Development 180
4. Planning System 182
5. Graphical Programming and Monitoring of Program Behavior 187

REAL TIME SYSTEMS' > 195
-1. Introduction 197

2. Personal Workstations 197
3. Multiprocessor Architectures 199
4. VLSI Design Tools 201
5. Studies in Machine Learning 214

SYSTEMATIC PROGRAM DEVELOPMENT 223"j -

1. Introduction 224
2. Larch 224
3. The REVE Theorem Prover 228

THEORY OF COMPUTATION 239

1. trilroductlon 241

2. Member Reports 242

1"HEORY OF DISTRIBUTED SYSTEMS , 265

1. Overview 266

2. Software Clock Synchronization 266
3. Foundations of a Theory of Specification for Distributed Systems 269
4. Distributed Consensus 270
5. Election of a Leader in a Distributed Ring of Processors 273
6. Distributed Network Algorithms 274

7. Diagnosis of Faulty Components 276

8. Distributed Network Resource Allocation 276

9. Unification 277

10. Combinatorics and Graph Algorithms 278
11. A CLU Parser-Generator 278
12. Plans 279

PUBLICATIONS 289

I NSPECT ED

ADMINISTRATION

Academic Staff

M. Dertouzos Director
M. Rivest Associate Director
A. Vezza Associate Director

Administrative Staff

P. Anderegg Assistant Administrative Officer
J. Hynes Administrative Officer
M. Jones Fiscal Officer

Support Staff

G. Brown C. Morin
J. Coleman E. Prof irio
L. Cavallaro M. Sensale
R. Cinq-Mars J. Spillane
R. Donahue C. Stevens
T. LoDuca P. Vancini

INTRODUCTION

The MIT Laboratory for Computer Science (LCS) is an interdepartmental
laboratory whose whose principal goal is research in computer science and
engineering.

Founded in 1963 as Project MAC (for Multiple Access Computer and Machine
Aided Cognition), the Laboratory developed the Compatible Time-Sharing Systems
(CTSS), one of the first time-shared systems in the world, and Multics -- an improved
time-shared system that introduced several new concepts. These two major
developments stinmulated research activities in the application of on-line computing
to such diverse disciplines as engineering, architecture, mathematics, biology,
medicine, library science, and management. Since that time, the Laboratory's
objectives expanded, leading to research across a broad front of activities.

The first such area entitled Knowledge Based Systems, involves making programs
more intelligent by capturing, representing, and using knowledge which is specific to
the problem domain. Examples are the use of expert medical knowledge for
assistance in diagnosis carried out by the Clinical Decision Making Group; and the
use of solid-state circuit design knowledge for an expert VLSI (very large scale
integration) design systems by the VLSI Design Project.

Research in the second and largcst area entitled _iachines, Languages_an
System, strives to discover and understand computing systems at both thi
hardware and software levels that open new application areas and/or effect sizable
improvements in their ease of utilization and cost effectiveness. New research in this
area includes the architecture of very large multiprocessor machines (which tackle a
single task, e.g., speech understanding or weather analysis) by the Computation
Structures, Functional Languages and Architectures, and Real Time Systems
Research Groups. Continuing research includes the analysis and synthesis of
languages and operating systems for use in large geographically distributed systems
by the Programming Methodology and Real Time Systems Groups. Extended
networks for such distributed environments are studied by the Computer Systems
and Communications Group, while distributed file servers are pursued by the
Distributed Computer Systems Group. Finally a key application, involving the
tailoring of news and other community information to individual needs, is pursued by
the Imaginative Systems Group.

The Laboratory's third principal area of research, entitled TheQ. involves
exploration and development of theoretical foundations in computer science. For
example. the Theory of Computation Group strives to understand ultimate limits in
space and time associated with various classes of algorithms: the semantics of

INTRODUCTION

programming languages from both analytical and synthetic view- points; the logic of
programs; and the links between mathematics and the privacy/authentication of
computer-to-comouter messages. Other examples of work in this area involve the
study of distributed systems, by the Theory of Distributed Systems Research Group,
and routing algorithms for VLSI circuits.

The fourth area of research entitled Comouters and People, entails societal as well
as technical aspects of the interrelationships between people and machines.
Examples include the use of computers in the educational process by the
Educational Computing Group; the use of interconnected computers for planning; as
well as the societal impact of computers carried out by the Societal Implications
Research Group.

During 1983-1984, the Laboratory embarked on the ambitious project of
constructing Project Tanglewood, an emulation facility consisting of 64
interconnected large computers, whose purpose is to analyze the behavior of larger
(up to several thousand machines) multiprocessor systems. This facility, funded by
the new!y formed Strategic Computing Program of the Defense Advanced Research
Projects Agency, will enable our experimenters to try out ideas before committing
their proposed architectures to silicon circuits. Another related development duril~g
this period has been the continuing development of the MultiLisp multiprocessor
language by Professor Robert Halstead of the Real Time Systems Group. A
multiprocessor applications workshop sponsored by members of the Laboratory was
held in Spring 1984 to establish the amount of parallelism that can be expected in a
variety of applications.

Another growth activity during 1983-84 has been the newly established
Educational Computing Group which is now headed by Dr. Andrea diSessa and
includes Professors Harold Abelson, Seymour Papert, and Dr. Sylvia Weir. This
group, which in tne last 12 years developed the widely used language LOGO, is
currently focusing its efforts on the development of Boxer, a successor to LOGO that
encompasses new concepts in the computer and cognitive sciences and in
educational innovation.

During this reporting period we have also made substantial progress in distributed
systems research. The NuBus architecture that we developed was successfully
transferred to industry (Texas Instruments) and we took delivery of 30 Texas
Instruments Nu Machines supplied to us in exchange for our contributions. These
and other related machines (single-user Vaxes and Lisp Machines) are being
interconnected into prototype interconnected systems within the Laboratory thereby
forming an experimental basis for the study of distributed systems. During the
Spring of 1984, key researchers in distributed systems presented their results to
some 400 attendees in an ILP-sponsored conference.

2

iA

IN r ROD LJC I ION

During 1983-84, the Laboratory formed two new entities -- the Distributed
Computer Systems Research Group and the VLSI Design Project. The first entity,
headed by Scnior Research Scientist Dr. David D. Clark is concerned with the
architecture of distributed systems and in particular with tile servers and
communication protocols. The second entity, headed by Professors Charles
Leiserson and Richard Zippel, is intended to coalesce and focus the various VLSI
design activities within LCS. A key research activity of the VLSI Design Project is the
study and development of an expert VLSI design system, Schema, which will be used
as a common basis for all MIT VLSI design research.

Other events in 1983-84 were the arrival of three IBM engineers who will help us
construct the Laboratory's Emulation Facility; and the launching of the Laboratory's
bimonthly newsletter -- The Gateway.

In 1984, the Laboratory issued the LCS Achievement Award to Professor Joel
Moses for his pioneering work on MACSYMA; and the one-time LCS Founder's
Award to the founder of LCS (then Project MAC) Professor Robert M. Fano.
Profesor Fano will be retired effective July 1984, but will remain a part time member
of the Laboratory. Other departures during 1983-134 included Professor Chiistos
Papadirnitriou (to Stanford) and Professor Michael Hammer (to Iris own company).

Arrivals in the same period were Assistant Profenors Shaqf Go!dwasser, Silvio
Micali, Ramesh Ptil, Christopher Terman, and Research Associates William
Ackerman and eenjarnin Kuipcrs. Our Laboratory consisted of 240 members . 53
faculty and academic research staff, 30 visitors and visitinlg faculty, 57 professional
and support staff, 110 graduale and 90 undergraduate students -- oiganized into 16
research groups. Laboratory research during 1983-84 was funded by 16
governmental and industrial organizations, of which the Defense Advanced
Research Projects Agency of the Department of Defense provided over half of the
total research funds.

Technical results of our rcsearch in 1983-84 were disseminated through
publications in technical lit(erature, through Technical Reports (TF29- rR3 17), and
through Technical Memoranda (I M238 TNI262).

3

CLINICAL DECISION MAKING

Academic Staff

P. Szo)ovits, Group Leader

R. Patil

Collaborating Investigators

M. Criscitiello, M.D., Tufts-New England Medical Center Hospital
R. Friedman, M.D., University Hospital, Boston University
W. Hardy, Ph.D., University Hospital. Boston University
J. Hollenberg, M.D., Tufts-New England Medical Center Hospital
J.P. Kassirer, M.D., Tufts-New England Medical Center Hospital
M. Klein, M.D., University Hospital, Boston University
J. Lau, M.D., Tufts University-New England Medical Center Hospital
A. Moskowitz, M.D., Tufts-New England Medical Center Hospital
S. Naimi, M.D.. Tufts-New England Medical Center Hospital
S.G. Pauker, M.D., Tufts-New England Medical Center
W.B. Schwartz. M.D., Tufts-Now England School of Medicine
L. Widman, M.D., Case Western Reserve University Medical School,

Research Staff

G. Burke
C. Eliot
W. Long

Graduate Students

R. Granville T. Russ
P. Koton E. Sachs
R. Kunstaetter M. Wellman

Undergraduate Students

S. Ferguson C. Kim
R. Goldberg C. Park
M. Harvey V. Simonaitis

CLINICAL DECISION MAKING

Visitors

M. Feinberg I. Kohane
M. Fieschi B. Kuipers
J. Hunter

Support Staff

R. Hegg

6

CLINICAL DECISION MAKING

communication. People use models of their conversational partners, models that
contain ideas of the other's knowledge and beliefs, in order to determine the correct
context of the conversation, Any computer system that engages in intelligent
discourse will have to have a similar model of the user. and it will hIve to be able to
derive this model. Our plan is to build a prototype system that forms this model much
in the same way that people do, through past experiences with the user, making
assumptions about common knowledge where specific knowledge fails.

3.4. Research Plan

We plan to continue work on both the Heart Failure Project and the Ventricular
Arrh'ytnmia Management Advisor Project. Also, our current work on user modeling
will continue. aod we hope to have a more complete definition of the initial model
and to begin a computer implementation during the coming year. In addition, we
plan to begin development of an experimental environment where we can test our
theories on actual student users. We ate currently tr,,ing to select tile appropriate
application area for this: initially. it must be a program whose medical expertise is
more limited and easier to build than the two major projects described above, so that
we may have a testbod in the relatively near future.

4. DEVELOPMENT OF TOOLS FOR CLINICAL DECISION
ANALYSIS

4.1. Executive Summary

In this subproject the investigators have been developing and modifying a
microcomputer program to perform clinical decision analysis. The program
presumes the user is familiar with the basic principles of decision analysis
tfotmulating problems as decision trees, a,;signing likelihoods iprobabilitiesj and
rel,,tive values [utilities]. and interpreting the results of systematic variations in the
values of single par:mneters or sets of paramelers [sensitivity analyses]. The program
allows the users to efficiently specify and analyze such decision problems. In the
course of the first twelve months of the project, the program has been rewritten in
several different environments to explore its extensibility arid to improve it oase of
use. We have directed our efforts entirely at the IBM PC personal computer because
it has the lions share of the microcomputer market. The original program is written
in UCSD Pascal. I hat system. with its compact P-code represonoation was
necessary to "fit" thf program into a microcomputer. Two more recently developed
programmnig envirmnimrits that (.arn use lar ger amounts of memory (IQLISP and
Turbo Poi;cah ha, , on u.,,. d to provide veisions that r1o not require the user to
purchase the exporuivo P-sytein and version that are compiled. produciig a five to
twenty fold irlieaise inn procus.;rg speed. II the past vc Jr vc have alu enlarged our

20

CLINICAL DECISION MAKING

depth, it is going to have to use context in both unders, : nding the user and in order
to provide appropriate responses. Then it follows that the system is going to need a
model of the user's knowledge and behefs in order to provide the required context
[5]. Two currently open problems with user models are how must the system's
model of the user change as the discourse progresses, and where does the
information in the model come from in the first place?

A good deal of active research is currently attacking the first of these open
questions, especially from the end of understanding user statements. Examples of
ongoing work include that of Pollack[9], Carberry[1] and Granger[2]. However, no
one has proposed a theory with which a system can initially create or derive a model
of the user. This is the problem that is being addressed in this project.

The solution proposed here is based on a theory of the way people derive their
models of others for discourse. In general. we know what we know and believe, and
more importantly. we have an idea how common this knowledge and these beliefs
are. When I meet an adult. I assume ne knows the difference between red and green,
since I believe this is common knowledge learned while very young, but I would not
assume he is necessarily familiar with Fillmore's case grammar theory, because I
believe only people with a special interests in linguistics have studied case grammar,
and that not everyone is that interested in the subject, On the other hand, if I am
introduced to someone and am told as part of the introduction that the person is a
linguist. I would expect him to be at least aware of Fillmore's work. If I believe that
there is a little grc,(,n frog in the bottom drawer of my desk that created the universe, I
might tenatciously hold this belief, but I would also recognize that the vast majority of
people, for whatever reason, do not share this view.

In other words, it seems that the initial model we form of a person fcr discourse
purposes is the first impression (for the present meeting) we have of that person.
Obviously, the more information we have. the more accurate the impression. Upon
meeting an intimate friend, our model would be fairly elaborate and accurate.
Meeting a stranger for the first time would allow us to form only a vague model based
oil what we believe is common to the average person.

Computationally, this suggests a hierarchical default mechanism for generating a
user model. Each specific piece of information known about the user, either from
previous encounters or from being told, can be entered directly into the model. Other
pieces can receive default valucs from what the system believes to be common
knowledge or average values. Obviously, the system would need to keep track of
what is actually known and what is being assumed ahout tile user. As more
information is learned about the user through discourse, default values can be
replaced with actual facts.

In conclusion, we have se(cn that context is essential for meanirlgful

19

CLINICAL DECISION MAKING

utterances will be understood. Telling a patient suspected of having leukemia that
the test results were positive, meaning that the results were positively conclusive or
that they were favorable, would be incorrect because in this context positive means
that the illness being tested for is present.

But context is more important than avoiding the misinterpretation of statements. If
somehow the speaker and hearer can agree on the context for the discourse. both
people's jobs are made easier. Whatever is in the agreed context can be taken for
granted in that both participants know of its existence and understand it. Then
conversation can be restricted to those statements that somehow provide
information that is not yet in the agreed context. This allows the speaker to follow the
tenets of conversation observed by Grice[3]. And if we needed to describe every
concept each time we mentioned it, we would literally never be able to finish a
thought, since every concept used to describe the initial idea would itself have to be
described, and each of the items used in those descriptions would have to be
described, and so forth.

Accepting that context is essential for discourse, we might ask exactly what do we
require to be in the context? As a speaker, we need not only every piece of
information we know that might affect what we want to say, but also how each piece
will affect the interpretations of our statements for the hearer. And as a hearer, we
need to know what effects the speaker meant to have by his statements. In other
words, in addition to knowing what we know and believe concerning the topic of
conversation, we have to know (or least have an idea of) what the other person
knows and believes. Since we cannot infallibly know what is in another's head, at
best we can have a model of the knowledge and beliefs of our partner in
conversation.

We use models of others' knowledge and beliefs at all stages when we engage in
communication. It is used when we are determining what is appropriate to say. For
example, if you were stopped in the streets by someone in a car with out of state
plates and the driver asked you directions to a local famous site, you would probably
not give directions based on the location of other sites that would be well known to
residents, but not to tourists. This is because in this situation you believe the driver
generally doesn't know her way around town. On the other hand, if you were giving
directions to a friend whom you know to have lived in this city for years, you would
use local landmarks because you believe she is familiar with them.

Models are also used in determining an appropriate way to make a statement. To
use the same example, one might say to a resident of Boston, "Go to the Hancock
and turn left," whereas to a tourist a more appropriate statement would be "Go to
that tall glass building and turn left."

If a computer system is ever going to engaqe in a discussion of any significant

18

CLINICAL DECISION MAKING

determination of the appropriate recommendation depends on the assessment of
costs of the two conditions and the assessment of their ikelihoods. The reasoning
that leads to the actual therapy recommendation can be made more general by
including explicitly the risk-benefit analysis that supports it. This strategy simplifies
several problems. Inclusion of new therapies involves changing the assessment of
costs to reflect the particular characteristics of the therapy. Changes in
understanding about the properties of a therapy either because of new medical
knowledge or a different school of thought are similarly incorporated as changes in
the assessments or as changes in the strategies for optimizing the achievement of
therapeutic goals.

Over the past year our work on this project has centered on the gathering of case
material to test both an initial trial program for arrhythmia advice and for the
development of the appropriate design for the Advisor. The case material includes a
complete record of the minute-by-minute arrhythmia data from an arrhythmia
monitor as well as the clinical information needed to follow the disease state and the
record of therapeutic interventions. On a few cases we have also been able to
obtain drug level information for verifying pharmacokinetic models. So far we have
collected data on 44 cases. This case material is not as detailed as we will ultimately
need for verifying particular assessment algorithms, but it is serving us well for
developing the initial design.

3.3. User Models in Discourse

The problem of modeling what the user knows already and wants to know is
difficult. During the past year we have begun to concentrate on one aspect of this
problem: the role of conversational context in generating appropriate text.

When engaging in communication, it is important to know the context in which
statements are being made. This is equally true for the speaker and the hearer. (Or
the writer and the reader. We will not distinguish between oral and written
communication here unless we do so specifically by exception.) It is necessary for
the hearer to know the context in which statements are being made in order to fully
understand them. For example. consider the sentencc "The test result was
positive." In the context of a qualifying exam. this statement made to the candidate
would be cause for celebration. On the otner hand, this statement made to a patient
being tested for leukemia has a completely differo, t meaning. And the statement
made to two brothers who are trying to see if one ca'i donate a kidney to the other
has yet a third meaning. It is easy to come up with many contexts for which this
statement has a new meaning. It is obviously important for the hearer to kno', the
context in which an utterance is made.

It is equally important for the !;peaker to)e aware of the context in which his

17

CLINICAL DECISION MAKING

alternative relations that might exist in the patient. This kind of flexibility is possible
because the model provides a consistent physiological explanation of what is known
about the patient. Modifications to that representation are supported by a Truth
Maintenance System that propagates the implications throughout the model. Thus.
if there are inconsistencies in the deduced state, these will be pointed out by the
system along with the alternatives for correcting them. These mechanism makes it
possu!e for the user to realistically consider changes in the conclusions of the
system and to tailor the reasoning to whatever the user knows about the patient.

Over the past year we have made significant strides in the development of the heart
failure program. To explore the important representational issues, we are initially
developing the model on a subset of the domain-the problem of managing angina
in the context of possible heart failure. We have put together a causal model for this
subdomain that includes about fifty nodes related as definite and possible causal
factors and worsening (predisposing) factors. With this model we are developing
general strategies for the assessment of evidence from the patient findings,
strategies for pursuing a diagnosis, and strategies for finding and assessing therapy
choices. A working version of this program has given us new understanding of some
of the needs for explanation and the necessary ingredients for a useful explanation
over the last few months.

3.2. The Ventricular Arrhythmia Management Advisor

The problem of generalizing the strategies for therapy management are being
addressed by the Ventricular Arrhythmia Management Advisor. The domain of the
program is the control of ventricular arrhythmias in the context of the intensive care
unit. Many of these arrhythmias occur as a result of ischemia but there are also a
number of other causes as well as factors that may worsen the problem. The therapy
for these arrhythmias is of two types. Either it is directed at the arrhythmia itself or it
is directed at the cause. The arrhythmia therapies commonly employed include
lidocaine, procainamide, quinidine, bretylium, and others. The determination of
which drug is appropriate in an individual is primarily done by trial and error. Thus,
several may be tried before an acceptable patient response is achieved. These are
al! drugs with multiple compartment pharmacokinetic models, high interpatient
variability, narrow therapeutic windows, and high incidence of toxicity. Thus, it is an
excellent domain in which to consider the issues of generalization of patient
management strategies.

Our approach to generalization is to look for the underlying unifying concepts that
run through the patient management process. For example, in adjusting the dosage
of a drug for anticipated sensitivities, the physician is actually going through a
particular instance of risk-benefit analysis in which the risk is the likelihood of
toxicity and the benefit is the likelihood of control of the arrhythmia. The

16

CLINICAL DECISION MAKING

3.1. The Heart Failure Project

The Heart Failure Project has been particularly fruitful for developing a model of
user access and control over the reasoning process. The central observation in the
development of a design for this program is that much of the reasoning that supports
both diagnosis and therapeutic decisions is based on the particular complex of
disease processes and physiological compensations exhibited by the patient. The
most obvious way to produce similar kinds of reasoning in a computer program is to
do the reasoning from a physiological representation of the understanding of the
patient's state. Thus we are developing a program that has at the center a
qualitative causal physiological model of the factors related to heart failure, which
can represent what is known about the patient state. This model is used for
understanding the significance of the findings, reasoning about the possible
diagnoses, reasoning about appropriate therapies, and providing explanations for all
of these kinds of reasoning.

A physiological model centered approach to the patient management process
gives a user access not only to the reasoning of the program but also to the
justifications for the reasoning. That is, it is possible for the user to examine and
explore the physiological relationships concluded by the program and used to
support the recommendations. For example, if the program suggests the use of an
arterial vasodilator to increase the cardiac output, the physiological model would
provide a consistent picture of why the recommendation is appropriate. This would
include facts such as evidence of vasoconstriction caused by a high sympathetic
state and therefore the likelihood that the cardiac output would increase rather than
causing the arterial pressure to decrease. In addition the model provides the user
with the reasons for being cautious in giving such a therapy since a possible
alternative result is for the arterial pressure to drop.

The most important consideration in developing a physiological model for
supporting this kind of reasoning is to provide the relationships at the appropriate
physiological level. From our exploration of the heart failure domain it appears that
the level needed for reasoning and for explanation are the same. It also appears that
a single level which includes the hemodynamic relationships in the cardiovascular
system is adequate for this domain. This is not so in other domains, as pointed out
by Patil in the acid-base domain, but the single level in this domain simplifies the
problem for exploring other issues of diagnosis and management reasoning.

The physiological model also makes it possible for the user to exert control over
the reasoning process. We have observed that the user many times is better able to
assess physiological states of the patient than a program that has a limited
perspective on the problem and only the ability to ask questions of the user. Thus,
our intention is to collaborate with the user in the reasoning process and give the
user the ability to make hypotheses, change conclusions, and in general to test the

15

CLINICAL DECISION MAKING

The diagnostic system at Tufts employs an Evoker module that is modeled after the
categorical aspects of the Present Illness Program developed here [7]. Its purpose is
to evoke a collection of elementary hypotheses, which are then assembled by a build
module, into patient-specific hypotheses. Given a set of active hypotheses the
system must choose diagnostic testing for the confirmation of these hypotheses. We
will be investigating the implementation of a test planning module that will employ
the reasoning processes that expert physicians use in their pursuit of medical
diagnostic and therapeutic strategies.

3. EXPLANATION AND JUSTIFICATION BY EXPERT PROGRAMS

This section focuses on the development of improved expla'iation and justification
methods for the Digitalis Therapy Program and the extension of these methods to
other problem domains. Our views of both the Digitalis Therapy Advisor and of how
best to accomplish the objectives outlined in the proposal have evolved over the last
four years. With the increased use of a large variety of drugs in addition to digitalis
in many conditions for which digitalis was used almost exclusively, it has become
obvious that a successful program must deal with a larger, coherent management
problem rather than concentrate on the use of a single drug. Therefore, the context
of this research has broadened to encompass two logical outgrowths of our early
work on digitalis. The first of these is the Heart Failure Project. The objective of this
project is to help the user reason about the diagnosis and management of heart
failure by relating the findings to the possible pathophysiology that might be
responsible. This project is an outgrowth of the observation in the Digitalis Therapy
Advisor that it is difficult to relate the changes in the digitalis levels to the changes in
the heart failure manifestations without taking into account the other therapies that
might be involved and the particular nature of the heart failure in the patient. The
second project is the Ventricular Arrhythmia Management Advisor. This project
extends the idea of computer assisted therapy management to the management of a
class of disease situations where any of a number of therapies might be applicable.

These two projects have given us a clearer understanding of the problems of
giving the user useful explanations of the reasoning and advice of such programs.
In particular we have been making significant strides over the past year to design
programs where the user has access to the disease, physiological, and therapeutic
relationships behind the advice given by the program. One important benefit of the
explicit representation of these relationships is that it promises to let us build
systems wherein the user has a much larger degree of control over the reasoning
process and the conclusions reached by the program. The program thus becomes
more a "reactive blackboard" on which the user can try out various ideas, rather
than the more traditional expert decision maker. Finally, the changes needed to
allow our programs to deal with larger disease classes, in which there are significant
therapy choices to be made, also simplify the addition of new therapy modalities.

14

CLINICAL DECISION MAKING

2.3. Plans For The Coming Year

Completing the Validation of the Model of the Reasoning Process and
Additional Transcript Analysis: We plan to complete the evaluation of the
model's completeness and generality utilizing an existing rule system to simulate the
decisions being made in the transcript. EMYCIN, [8] a domain independent rule
system will accept the set of rules that we derived from the transcript and
systematically apply them until a goal attribute is established, the system exhausts
the rules, or the rules that we derived fail. Our goal attribute is the same cnoice of
action that our expert physician chose. The adequacy of the knowledge encoded by
these rules will be assessed by applying them to similar management problems but
with a slightly different context. The degree to which we must append the set of
rules to establish our goal will be a measure of their adequacy.

As a means of establishing empiric validity of our model of an expert physician's
reasoning processes, we will be analyzing transcripts of the same physician, solving
problems on a case in a less familiar clinical domain. We suspect that similar
reasoning processes are employed for decisions with clinical problems that can be
structured in a similar fashion.

We also have collected several other transcripts from other expert level physicians
with other areas of expertise than the present physician-subject. We will be
evaluating these transcripts in the manner described above. The process will allow
us to assess the similarities and differences in the reasoning processes employed by
expert physicians with different areas of expertise, for problems both in and out of
their domain of expertise. We will be looking to establish whether the same
theoretical model of the reasoning process found for the pulmonologist is employed
by other physicians facing the same decision.

We are interested in characterizing the development of clinical cognition.
Specifically we would like to follow the ontogeny of probabilistic reasoning and the
development of reasoning tools for making tradeoffs in the risks imposed by
diagnostic tests and therapy. We will start to collect transcripts of physicians at
various stages of their training (3rd year and 4th year medical students, 2nd year
Internal Medicine residents and medical sub-specialty fellows), as they solve the
same problems posed to our expert level physicians.

Developing a Computational Model of the Decision Process: Understanding
the structure of knowledge and problem-solving methods that underlie clinical
experiis: will have a significant impact on the design of knowledge.based artificial
intelligence systems in medicine. We have begun to investigate putting together
resuits of our study of expert clinical reasoning with a hypothesis-directed diagnostic
system that is currently in working model form at [ufts University, Medford canipus
(B. J. Kuipers).

13

CLINICAL DECISION MAKING

section. In this manner, we reviewed the transcript and were able to characterize
many of the reasoning processes employed by the physician subject.

Validation of the model of the reasoning process: The model's completeness and
consistency was assessed by two means, its ability to account for each referring
phrase in a selection of the transcript and its ability to specify a computer simulation
of the decision process.

The first step accomplished in the specification of a computer simulation of the
reasoning process was to encode the knowledge employed by the expert physician
in making his decision. Sections of the transcript containing decision making
material were reviewed and the knowledge that they contained was translated into a
rule language. The basic structure of the language is the rule, which acts to link
antecedent conditions to actions based on the rules of those antecedent conditions.
The rules take the form of

IF <ANTECEDENT CONDITIONS> THEN <ACTION>.

The process was completed for the each of the decisions focused on by the
physician-subject. The next step in the simulation process is described below.

Comparison to decision analysis: We have compared the decision process
employed by our physician-subject to a normative model of decision making under
uncertainty, namely decision analysis. We found the reasoning process exhibited in
the transcript to closely resemble the conceptual framework of decision analysis but
to employ a significantly different processing algorithm. Based on this work, we
have submitted an abstract for presentation to the Society for Medical Decision
Making at its sixth annual meeting in November 1984 [6].

Application of Results to the Teaching of Clinical Medicine: The research
we are undertaking as part of this effort might enhance our ability to teach expertise
to clinicians at all levels. In a recent publication [4] we reported just such an effort,
based on the principles identified in descriptive research on clinical problem solving.
In this paper, we showed that clinical medicine can be taught to junior and senior
medical students and to house officers by a method that follows an iterative,
hypothesis-based approach. This method is a direct derivative of earlier research of
ours and others on human problem solving and on clinical problem solving in
particular. In recent years this prospective hypothesis-based method also has been
applied to postgraduate education at the annual meeting of the American College of
Physicians.

We expect that the efforts of this research will produce similar insights into
decision making under conditions of uncertainty, in particular those decisions
requiring tradeoffs between the risks and benefits of tests and treatments. We also
expect that these insights can be incorporated into the teaching of clinical medicine.

12

== =4
= = =

m m== =J-m= • m •m m= •m mm •mun|

CLINICAL DECISION MAKING

2.2. Completed Work

Transcript Analysis: Our work to date has involved an extensive analysis of the
behavior of one expert physician (pulmonologist) making management decisions for
a desperately ill patient with preleukeminia, chest pain, fever and an acute
pulmonary infiltrative process. The problem involves choosing between empiric
treatment, no treatment and employing potentially dangerous testing to guide
treatment. The uncertainty in etiology of the underlying disease process, the high
risk associated with gathering further information and the urgent need for specific
treatment of the immunocompromised patient engenders decision making with
probabilistic reasoning and employment of techniques to assess multi-attribute
utilities. Research in transcript analysis proceeded as described in the following
sub-sections:

Segmenting the transcript: The verbatim transcript was first segmented into lines
and paragraphs. This process involved breaking up sentences so that only one or
two pieces of a complex concept was contained on a line, which frequently spread a
sentence over many lines. Paragraphs were delineated as coherent chunks of
narrative. Paragraph breaks were inserted with each change of topic or style of
reasoning. This particular transcript was segmented into over 1100 lines. The
transcript was then reviewed to identify the sections that contain problem solving
material. Subsequent steps in the analysis deal only with those sections that
contained problem solving material.

Determining the conceptual framework of the reasoning process: Each line of the
transcript was examined to identify the domain object being referenced. These
object phrases are distinct from the wording used to refer to them.

Each object phrase was then categorized, resulting in a broad list of elements that
the expert was reasoning about. This list of elements was then grouped and further
categorized to establish a list of conceptual framework elements.

Determining the content of the knowledge being used Each line of the transcript
was then reviewed to identify the assertions made about each domain object. We
assume that the content of these assertions constitutes at least some of the
knowledge employed by the expert physician.

Characterizing the reasoning process: With the transcript analyzed in terms of
domain objects and relationships among domain objects, the progress of the
decision process was analyzed. The reasoning process employed in a specific
problem solving section was then matched against problem solving methods derived
from research in Artificial Intelligence (Al). When a specific Al method was seen to
fit a particular section, we then examined other sections of the transcript to
determine if the same Al method characterized the reasoning process in the new

11

CLINICAL DECISION MAKING

configurations. Dr. J. Hollenberg has implemented a small prototype artificial
intelligence program that can help its user to define new decision trees. That
program ropresents typical decisions, potential outcomes, and probabilities and
utilities in a narrow domain of medicine, and applies a frame- instantiation algorithm
to guide the user through the process of decision-tree construction. Mr.
M. Wellman, working with Prof. P. Szolovits and Dr. Pauker, has been studying the
development of multi-attribute utility models, and has begun the design and
implementation of an artificial intelligence program that will assist an expert
decision-analyst in the construction of new multi-attribute utility mobels.

1.4. Institutional Arrangements and Plans

As in the past, we have been successful in integrating a complex set of related but
distinct research efforts at three separate institutions. This has proven possible
because Prof. Kuipers (from Tufts University) is also a Visiting Scientist at the MIT
Laboratory for Computer Science, because Prof. Szolovits, Dr. Long and Mr.
Wellman regularly visit Drs. Pauker and Kassirer's laboratory and fellows, and Drs.
Hollenberg and Moskowitz have taken courses at MIT and interacted frequently with
other members of the Clinical Decision Making Group.

We plan to continue in the coming year with very similar arrangements. However,
Prof. Kuipers will join the MIT Laboratory for Computer Science as a part-time
Research Associate, leaving his position at Tufts University. He will also share an
appointment at Tufts University Medical School. In addition, Dr. Long has begun to
spend more time at Tufts/New England Medical Center because we have obtained
new funding for a project in the management of Congestive Heart Failure, the
research on which is to be performed in collaboration with Dr. Pauker and another
group of physicians at Tufts/NEMCH. Also, Dr. Robert Kunstaetter has joined the
Clinical Decision Making Group at MIT as a Research Assistant, and has begun to
develop a collaborative project with Dr. G. Octo Barnett of the Massachusetts
General Hospital, wherein we plan to apply the explanation methods developed
under this project in teaching students at the Harvard Medical School.

2. CRITICAL DECISION NODE PROJECT

2.1. Objectives

To describe the knowledge representations and problem-solving methods
employed by physicians making difficult management decisions, involving
considerable risk and uncertainty. To investigate the nature of clinical expertise and
to characterize the development of probabilistic reasoning by comparing the
knowledge and problem-solving methods used across experimental subjects
differing substantially in expertise.

10

CLINICAL DECISION MAKING

4) Give the user increased control over the system's internal decisions and
conclusions.

5) Generalize the models of therapy developed in our Digitalis Therapy
Program to other applications areas.

Work during the past year in this subproject has had two foci: First, we have
previously concluded that goals 1, 4 and 5 of the above list require not only the
creation of new techniques of explanation but also fundamentally-improved
representations of the knowledge that is to be explained. Therefore, Dr. W. J. Long
has, with the assistance of Mr. T. A. Russ and Mr. I. Kohane, developed a set of new
knowledge representations and reasoning strategies that will underlie the new
explanation capabilities. This work has been carried out in the context of two new
larger projects that derive from the Digitalis Therapy program: a program to assist
physicians with reasoning about congestive heart failure, and a program for
management of ventricular arrhythmias.

Second, Mr. R. A. Granville has created much improved methods of generating
English output from the explanation program, exhibiting conciseness and coherence
of text. A good explanation depends, however, not only on stylistically acceptable
English. One particular area we have identified as crucial to further improvements is
to tailor what the program says to what it believes the user already understands (part
of goal 3). During the past year, Mr. Granville has begun to develop user models to
help decide what needs to be stated and what can be left implicit.

1.3. Decision Analysis Tools Project

Our group has had many years' experience in developing and applying the formal
methods of decision analysis to a large variety of clinical decision tasks. Within the
past five years, the widespread availability of small, inexpensive, but powerful
computer workstations has made possible the widespread dissemination of these
methods and the provision of necessary computer support for their effective
application. The further problems facing the use of this method are partly
pragmatic-the cost and difficiilty of use of the hardware and software support
environment-and partly fundamental-the difficulty that potential users without
extensive formal decision-analytic training have in building new decision-models for
novel clinical problems.

This subproject has concentrated (during the past year) on both the pragmatic and
fundamental aspects of the problem. Dr. S. G. Pauker and his colleagues at
Tufts/New England Medical Center have improved the Decision Maker computer
program, adding new capabilities for cost-effectiveness calculations and Markov
modeling, and making it available in less expensive and more poA.;rful

9

CLINICAL DECISION MAKING

methods of decision analysis may be brought to bear. (Indeed, making practical the
application of just this methodology is the focus of our Decision Analysis Tools
project.) Often, however, critical decisions involving uncertain outcomes and
imprecisely-understood risks must be made, when the knowledge required by our
formal techniques is simply not available.

In this subproject, we have turned our attention to a formal analysis of the
decision-making strategies and knowledge of human experts faced with just such
problems. Our goal is to understand what these experts do in the face of a serious
lack of hard data, and to develop a sufficient understanding of their successful
strategies that we may develop computational methods that will enable future AIM
programs to use similar methods.

Dr. J. P. Kassirer and Dr. A. J. Moskowitz of the Tufts/New England Medical Center
and Prof. B. J. Kuipers of Tufts University hve collaborated in the extensive analysis
of the patient management decisions of one expert physician facing a very seriously
ill patient. To do this, they have developed a formal six-step methodology for the
analysis of verbal protocols taken from their subject, and they have begun to apply
the methods developed therein to improve the teaching of medical expertise to
clinicians at all levels.

1.2. Explanation and Justification Project

An innate part of the consultation process is the user's ability to explore the
reason ng on which the expert bases his advice and to argue the appropriateness of
the data and assumptions on which that advice is based. We outline five research
goals that would move the AIM field toward the ability to build programs that meet
this requirement:

1) Develop and implement new strategies of explanation by improving the
user's access to the program's knowledge of

* the causal and temporal relations among disease states,
pathophysiology, observtble signs and symptoms, and drug
pharmacokinetics, and

* internal decisions made by the program in the course of its
deliberations.

2) Test the utility and acceptability of explanation strategies.

3) Develop models of the user's present knowledge and what he or she
wants to know.

8

CLINICAL DECISION MAKING

1. OVERVIEW AND SUMMARY

Our overall objective is to develop improved methods of computer-based medical
reasoning, to better understand the reasoning of human expert clinicians, to develop
means for better explaining the knowledge and methods of the computer to its
potential users, and to improve the application of decision-analytic reasoning to
clinical problem-solving tasks. Each of these objectives matches a deficiency in
current AIM programs; thus, through this research effort we seek to enhance the
related capabilities of future AIM programs.

This project consists of three related sub-projects, focusing on the following goals:

1) 1o study and elucidate the knowledge representations and problem-
solving methods employed by physicians making difficult management
decisions, involving considerable risk and uncertainty.

2) To develop new methods that allow expert programs to explain and
justify their conclusions by arguing from fundamental medical facts and
principles and reconstructing the path by which those bases have led to
the program's recommendations.

3) To continue development and enhancement of a micro-computer-based
decision-analysis and sensitivity analysis system for clinical use by
physicians.

A summary of the accomplishments of each of these sub-projects is presented
here, and a more thorough discussion of each sub-project and its plans for the
coming year follow in the subsequent three sections.

1.1. Critical Decision Node Project

Throughout the past decade of significant progress in the creation of artificial
intelligence programs for medical applications, the study of how human expert
medical practitioners make clinical decisions has played a major role in suggesting
the methods and knowledge representations that could be used by these programs.
Equally important is the fact that such studies also help to make explicit just what the
knowledge of these expert clinicians is, thus helping to teach their skills to new
generations of doctors.

One of the most difficult areas of medical decision-making is that where decisions
rest on a complex interplay between competing risks and benefits. If all known
options open to the decision-maker are explicitly known, if all possible
consequences of each decision can be foreseen, and if the likelihoods and costs
and benefits of each of these outcomes can be assessed, then the normative

7

CLINICAL DECISION MAKING

representation scheme to allow more convenient representation of time series
processes and to allow the convenient performance of cost- effectiveness analyses.
We have also begun to rewrite our manual and develop a library of sample analyses.
The original versions of the program have been distributed to some 30 users and
groups.

4.2. Progress Report

The work accomplished in the past year differs slightly from what we originally
expected. First our target machine is no longer the Apple Ill. Since that time the
IBM-PC and IBM-XT have become the dominant force in the microcomputer
marketplace. We have therefore chosen these machines as our target. Furthermore
the microcomputer market has been sufficiently shaken out that we did not feel
compelled to maintain machine independence by using UCSD Pascal. Another major
reason for exploring the feasibility of abandoning that environment is because its
purchase cost ($600) was deemed to be a significant obstacle to program
distribution. We initially had difficulty moving to other Pascal environments because
the size of the required longest path object code overlay exceed one machine
segment (64K). We have recently identified two languages with allow use of
extended RAM and were therefore feasible programming environments-QLISP and
Turbo Pascal, version 2.0.

The Turbo and UCSD Pascal versions are nearly identical. The advantage of
Turbo, however, is its use of full RAM (up to 640K), allowing far larger trees
structures and, more importantly, far deeper recursion depths. In this version, we
have incorporated a form of cost-effectiveness analysis which allows the use of dual
utility structures with an average of only 15% increase in processing time (compared
to a 100% increase under more standard schemes). The concept involves
recognition that all features of a cost-effectiveness tree are duplicated, save for the
second utility structure. Rather that fold the tree back twice, we developed a new
expression processor that evaluates and expression and its shadow, or alternate
structure. The sum of probabilities x utilities then becomes two sums: probability x
utilityl and probability x utility 2. Thus all linking of tree structure and probability
evaluation (70-80% of processing) is performed only once.

We have also developed a representation for Markov processes (submitted for
presentation at SMDM meeting, 1984). The concept is that a Markov node is an
outcome descriptor (like a terminal node) but is a more complex process than simple
expression (utility) evaluation. Each utility is now an incremental utility, in three
flavors: initial, tail, and all others. Transition probabilities can be arbitrary time
dependent expressions. In the UCSD and Turbo Pascal versions, the number of
states can be very large (over 100) but processing is quite slow. In the IQLISP
version, all evaluations are compiled into BASIC generated object code, but the

21

CLINICAL DECISION MAKING

compiled expressions are very large. Compilation is lengthy (minutes to hours) but
running time is very fast. The number of states possible in this version is limited to
20-25.

The IQLISP version of the program is basically a compiler that does symbolic tree
evaluation. It generates large expressions that are analyzed for common sub-
expressions and are then passed to the BASIC compiler for object code generation.
The object code is very rapid in execution and includes a variety of advanced
graphic displays, but the lengthy compilation-and-test cycle makes it cumbersome
for tree development and debugging.

We have also been revising our manual. Preliminary distribution of an earlier
program version and manual has pointed out many inadequacies in that manual.
Clearly the additional features and new machine environment also requires that a
new document be created.

Because the grant award has not included funds for evaluation and testing of the
program, we have not been developing formal protocols for data collection by
collaborating users. Nevertheless, we have been developing broad experience from
program utilization in our own division and at a limited array of other user sites.

4.3. Research Plan

In the next year, we plan to complete the manual and to develop - further array or
worked examples and template analyses, including Markov and cost-effectiveness
techniques. We shall also continue to refine the IBM-PC versions of the program. At
this point, it is not clear whether the IQLISP version will continue to be feasible. That
language environment is moderately buggy and the time intensive issue of symbolic
compilation is difficult to manage. We shall continue to work in a compiled object
code environment, either in Turbo Pascal or in C (Lattice version). We shall support
processors with and without the 8087 coprocessor. We will try to develop a set of
graphics routines (for use with both monochrome and color graphics display boards)
to allow more natural tree display. We shall also explore the utility of using color
graphics to display multiway sensitivity analyses and shall try to support a standard
four or six color plotter, such as the Hewlett-Packard or the SweatPea. We are also
beginning to explored to feasibility of using windowing techniques and the "mouse"
as an input device.

At this time, we have not found efficient means of compiling dual utility analyses
(such as cost-effectiveness analyses) in the IQLISP version. We shall explore these
possibilities. We shall also continue to distribute the developing program to
interested collaborators so we can evaluate its utility.

22

CLINICAL DECISION MAKING

References

1. Carberry. S. "Tracking User Goals in an Information-Seeking
Environment." in Proceedings of the National Conference on Artificial
Intelligence (AAAI-83), Washington, DC, August 1983.

2. Granger, R. H., Eiselt, K. P. and Holbrook, J. K. "STRATEGIST: A
Program that Models Strategy-Driven and Content-Driven Inference
Behavior," in the Proceedings of the National Conference on Artificial
Intelligence (AAAI-83), Washington, DC, August 1983.

3. Grice, H.P. "Logic and Conversation," in Syntax and Semantics:
Speech Acts, Volume 3, Cole, P. and Morgan, J.L. (eds.), Academic
Press, New York, 1975.

4. Kassirer, J. P. "Teaching Clinical Medicine by Iterative Hypotherapy
Testing," New England Journal of Medicine, 209, (October 13, 19W3),
921-923.

5. Mann, W. C., Bates, M., Grosz, B. J., McDonald, D.D., McKeown,
K. R. and Swartout, W. R. "Text Generation: The State of the Art and the
Literature," Technical Report ISI/RR-81-101, Information Sciences
Institute. Marina del Rey, CA, 1981.

6. Moskowitz, A.J., Kassirer, J.P. and Kuipers, B.J. "Clinical Reasoning
versus Decision Analysis," to be presented at Society for Clinical
Decision Making Meeting, November 1984.

7. Pauker, S.G., Gorry G.A., Kassirer, J.P. and Schwartz, W.B. "Towards
the Simulation of Clinical Cognition. Taking a Present Illness by
Computer," American Journal of Medicine, 60, (1976), 981-996.

8. van Melle, W. "A Domain-Independent Production-Rule System for
Consultation Programs," Proceedings of Sixth International Joint
Conference on Artificial Intelligence (IJCAI-79), Tokyo, Japan, August
1983, 923-925.

9. Pollack, M. E., Hirschberg, J. and Webber, B. "User Participation in the
Reasoning Processes of Expert Systems,' Proceedings of the National
Conference on Artificial Intelligence (AAAI-83), Washington, DC, August
1983.

23

CLINICAL DECISION MAKING

Publications

1. Asbell. I.J. "A Constraint Representation and Explanation Facility for
Renal Physiology," MIT/LCS/TR-318, MIT Laboratory for Computer
Science, Cambridge, MA, June 1984.

2. Burke, C.G., Carrette, G.J. and Eliot, C.R. "NIL Reference Manual,"
MIT/LCS/TR-311, MIT Laboratory for Computer Science, Cambridge,
MA, January 1984.

3. Church, K. and Patil, R.S. "Coping with Syntactic Ambiguity or How to
Put the Block on the Box on the Table," American Journal of Linguistics,
8, (1983), 139-149.

4. Granville, R.A. "Cohesion in Computer Text Generation: Lexical
Substitution," MIT/LCS/TR-310, MIT Laboratory for Computer Science,
Cambridge, MA, December 1983.

5. Kuipers, B. "The Cognitive Map: Could It Have Been Any Other Way?" in
Pick, H.L., Jr., and Acredolo, L.P. (eds.), Spatial Orientation: Theory,
Research, and Application, Plenum Press, New York, 1983.

6. Kuipers, B. "Modeling Human Knowledge of Routes: Partial Knowledge
and Individual Variation," in Proceedings of the National Conference on
Artificial Intelligence (AAAI-83), Washington, DC, August 1983.

7. Kuipers, B. and Kassirer, J.P. "How to Discover a Knowledge
Representation for Causal Reasoning by Studying an Expert Physician,"
in Proceedings of the Eighth International Joint Conference on Artificial
intelligence (IJCAI-83), Karlesruhe, West Germany, August 1983.

8. Kuipers, B. "Programs that Understand How the Body Works," in
Proceedings of the Second IEEE Computer Society International
Conference and 1983 Stocker Symposium on Medical Computer
Science and Computational Medicine (MEDCOMP.83), September 1983.

9. Long, W. J. and Russ, T. A. "A Control Structure for Time Dependent
Reasoning," Proceedings of International Joint Conference on Artificial
Intelligence 1983 (IJCAI-83), Karlesruhe, West Germany, August 1983.

10. Long, W.J. "Reasoning about State from Causation and Time in a
Medical Domain," Proceedings of the American Association for Artificial
Intelligence 1983 Conference (AAAI°83), Washington, DC, August 1983.

24

CLINICAL DECISION MAKING

11. Long, W.J. Russ, T. A.. Locke. W. and Bucke, "Reasoning from Multiple
Information Sources in Arrhythmia Management," Proceedings of IEEE
Frontiers of §ngineering and Computers in lealth Care 1983,
September 1_983.

12. Long, W.J. "Causal Reasoning in a Physiological Model as a
Computational Paradigm." PrQg _Vin of IEEE Conference n Mica
Comout r Scienc (MEDCOMP 83), October 1983.

13. Long, W.J. "Potential of Artificial Intelligence in the Use of
Electrocardiographic Data," Computerized Interpretation of
Electrocardiogram IX, June 1984.

14. Martin, W.A., Church, K. and Patil, R.S. "Preliminary Analysis of a
Breadth-First Parsing Algorithm: Theoretical and Experimental Results,"
in Bolc, L., (ed.), Natural Languaae Parsing Systems, Macmillan Press,
London, 1984.

15. Patil, R.S. "Role of Causal Relations in Formulation and Evaluation of
Composite Hypotheses," Proceedings of the IEEE Conference on
Medical Computer Science (MEDCOMP-83). Burr Oaks, OH, September
1983.

16. Patil, R.S., Bromley, H. and Widman, L. "Causal Understanding of
Patient Illness in Medical Diagnosis," in Proceedings of the IEEE
Conference on Medical Computer Science (MEDCOMP-83), Burr Oaks,
OH, September 1983.

17. Szolovits, P. "Using Artificial Intelligence Models of Medical Decision
Making in Medical Education," in Meeting the Challenge: Informatics
and Medical Education, Pages, J.C., Levy A.H., Gremy, F. and Anderson,
J. (eds.), Elsevier Science Publishers B.V. (North Holland), 1983,
271.281.

Theses in Progress

1. Sacks, E. "Qualitative Mathematical Reasoning," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected November 1984.

25

CLINICAL DECISION MAKING

Talks

1. Kuipers, B. Member of panel, "Deep Models, Qualitative Reasoning,
Compiling From Deep Models, Anatomical and Physiological
Reasoning," Artificial Intelligence in Medicine Workshop, Ohio State
University, Columbus, OH, June 2,1984.

2. Kuipers, B. Member of panel, "Cognitive Psychology and AIM," Artificial
Intelligence in Medicine Workshop, Ohio State University, Columbus,
OH, June 1, 1984.

3. Kuipers, B. Member of panel, "Computers and Education: A
Technological Fix?" (Respondent to a presentation by Joseph
Weizenbaum.) Tufts University All-University Forum, Medford, MA,
February 14,1984.

4. Kuipers, B. "Qualitative Causal Reasoning for Second-Generation
Medical Diagnosis Programs,"

University of Minnesota Computer Science Department,
Minneapolis, MN, March 30,1984.

School of Computer and Information Sciences, Georgia
Institute of Technology, Atlanta, GA, April 5,1984.

Department of Computer and Information Science,
University of Massachusetts, Amherst, MA, April 12,1984.

Department of Computer Science, University of Texas,
Austin, TX, April 16,1984.

Department of Electrical Engineering and Computer Science,
University of California at San Diego, La Jolla, CA,
April 18,1984.

Department of Computer Science, Boston University,
Boston, MA, April 20, 1984.

5. Kuipers. B. "Studying Experts To Learn About Qualitative Causal
Reasoning," Stanford University Computer Science Department,
Stanford, CA, February 24, 1984.

6. Kuipers, B. "Knowledge Representations for Causal Reasoning," MIT

26

CLINICAL DECISION MAKING

Center for Policy Alternatives and Technology and Policy Program,
Cambridge, MA, October 28,1983.

7. Long, W. "Medical Applications of Artificial Intelligence," 19th Annual
Fall Conference of Suburban School Superintendents, Massachusetts
Institute of Technology, Cambridge, MA, November 2,1983.

8. Patil, R. Panel member, "Feasible and Infeasible Expert System
Applications," New England Association for Artificial Intelligence,
October 1983.

9. Patil, R. "Reasoning Methods in Medical Al Programs," 6.001 summer
course, MIT, Cambridge, MA, January 1984.

10. Patil, R. "Role of Physiology in Medical Reasoning" Annual conference
of the Canadian Society for Computational Studies of Intelligence,
London, Ontario, May 1984.

11. Patil, R. "Research Progress in the MIT Clinical Decision Making
Group," 1984 Workshop on Artificial Intelligence In Medicine, Ohio State
University, Columbus, OH, June 1984.

12. Patil, R. "ABEL: Acid-base and Electrolyte Project" 1984 Workshop on
Artificial Intelligence In Medicine, Ohio State University, Columbus, OH,
June 1984.

13. Russ, T. "A Control Structure for Time Dependent Reasoning," paper
presented at International Joint Conference on Artificial Intelligence
1983 (IJCAI-83), Karlesruhe, West Germany, August 12,1983.

14. Szolovits, P. "Experience with the OWL Knowledge.representation
System," Workshop on Knowledge Representation, Santa Barbara, CA,
October 1983.

15. Szolovits. P. "Reasoning Methods in Medical Artificial Intelligence
Programs," Nihon Digital Equipment Corporation User's Group Meeting,
Tokyo, Japan, November 1983.

16. Szolovits, P. "Current Problems in Knowledge Representation
Research," Symposium, Musashino Electrical Communication
Laboratory, Nippon Telephone and Telegraph Co., Tokyo, Japan,
November 1983.

27

CLINICAL DECISION MAKING

17. Szolovits, P. "Overview of Al Research at MIT," Seminar, SystemsDevelopment Laboratory, Hitachi Ltd., Kawasaki, Japan, November
1983.

18. Szolovits, P. "Integrating Al Decision Methods with Medical DatabaseSystems," Symposium on the HELP System, Salt Lake City, UT, January
1984.

28

' . *4j3,'AR

COMPUTATION STRUCTURES

Academic Staff

J. B. Dennis, Group Leader

Research Staff

W. B. Ackerman W. Y-P. Lim
C. K. C.Leung

Graduate Students

N. B. Bauman B. Guharoy
G. A. Boughton T. R. Hegg
J. D. Brock S. Jaganathan
T. A. Chu K. B. Theobald
G-R. Gao T. S. Wanuga

Undeorgraduate Students

J. Holderle E. Lyons
B. Kartz D. Marcovitz
D. Kravitz S. Markowitz
B. Kuszmaul T. Tran
B. Lim

Support Staff

P. Sedel

COMPUTATION STRUCTURES

1. INTRODUCTION

The work of the Computation Structures Group concerns new concepts of the
basic structure of computer systems, and therefore addresses issues ranging from
hardware design methodology, through the consistent specification of machine
architecture and user language, to the evaluation of applications for execution on
proposed system architectures. Two system designs are currently being pursued:
the static dataflow architecture for large scale scientific computation; and the VIM
Project which is exploring the application of dataflow principles to a general purpose
system architecture. In the development of the static architecture, progress has
been made in the architectural design of a practical dataflow processing element, in
the experimental design of key LSI components, in performance studies, and in the
techniques of program transformation essential to an effective compiler for VAL (the
functional programming developed by the group for use with dataflow computers).
Work on the ViM Project has centered on the design of representations for the
structured data types of VIMVAL (the user language for VIM), the philosophy of type
inference and type checking to be incorporated in VIM, and study of the problems of
maintaining data integrity through automatic backup. The group is also working on
an advanced methodology for the design of self-timed logic circuits in continuation
of its previous work in this area.

2. DATA FLOW PROCESSING ELEMENT

The principal effort of the Computation Structures Group is work toward
construction of a demonstration dataflow machine for high-speed numerical
computations. The goal is to demonstrate a machine that can achieve better than
100 megaflops of performance in executing useful programs compiled from VAL.
The work is guided by our experience in the analysis of benchmark programs in
application areas from weather modeling to plasma dynamics.

The design problem is simplified by the recent availability of a commercial, high
performance floating point chip set comprising a multiplier and an adder. Bocauso of
their ability to pipeline successive operations, they are well suited to to the
construction of a dataf low processor.

The envisioned machine has 64 processing elements, each built around a pair of
floating point chips and capable of at least five megaflops of performance. We
estimate that each processing element will hold several thousand dataflow
instructions and will include a large local memory for holding the arrays of values
that make up the database of an application. We expect the machine will be able to
achieve its full potential performance of 320 megaflops for many application codes.
Several proposals for the organization of the processing element have been
developed. These are being compared and evaluated, and a choice of one design for
detailed development will be made during the next year.

30

COMPUTATION STRUCTURES

3. PROGRAM TRANSFORMATION

The success of a practical dataflow computer for high performance scientific
computation hinges on the ability of a compiler to produce effective dataflow
programs from high-level source programs. The basic problem is to create target
program structures that adapt the degree of parallelism exposed in the source
program to the storage capacity of the machine. To do this, the compiler must
restructure the program to make the trade-off between time (parallelism), and space
(memory) that permits full utilization of the machine. The Computation Structures
Group is exploring two avenues toward this goal -- a general approach based on
program transformations that apply to any program written in VAL, and a second
approach that generates a pipe-structured dataflow program for any of a certain
class of VAL programs.

In his recent doctoral thesis [2], William Ackerman studied the translation and
optimization techniques for VAL programs that deal with arrays. The principal
transformation technique proposed for achieving high execution speed on a static
dataflow computer is the spatial interleaving of arrays and the unfolding of the
iteration loops that manipulate them. This technique allows the transformed
program to be distributed over many processing elements, permitting parallel
operation with minimal communication among the parts. This technique works for
the foralI expression of the VAL language as well as the normal sequential iteration
loop. and it works for nested loops and multidimensional arrays. It should yield good
results over a wide range of machine sizes and problem sizes.

Gao Guang-Rong has studied a class of VAL programs in which the body of the
program consists of several blocks of code interconnected without cycles. Each
block defines one or more array values in terms of its inputs, and has the form of an
iteration or a forail expression. Gao has shown that such programs can be
transformed algorithmically into dataflow machine code in which the data is
pipelined through the instructions at the maximum rate permitted by the
architecture. This aporoach permits calculation of the instruction and data storage
required, and therefore the right choice of space versus time may be made to utilize
as much of the machine's capacity as possible. The method used to construct
pipelined code by augmenting dataflow orograms with buffering is treated in earlier
work by Gao [8].

Incorporating these techniques into a practical compiler is a challenging task. Yet
the functional (applicative) nature of the VAL programming language makes the task
much easier than would be the case for a more conventional language such as
Fortran. Construction of a program-transforming compiler for real-world application
programs will be a major project over the next few years.

31

COMPUTATION STRUCTURES

4. LOGIC DESIGN METHODOLOGY

The Group has contributed to the study of asynchronous design of digital logic
systems for many years [4], and specifically to design techniques based on self-
timed concepts of logic design [9]. At one time it appeared that self-timed techniques
already developed might be competitive in the context of VLSI design [9]. However,
our experimental design of a two-by-two router device in LSI using standard self-
timed circuit elements showed that this approach is far from achieving competitive
component density.

Tam-Anh Chu has conceived a design method that exploits silicon layout and self-
timed principles together to achieve designs that are competitive with conventional
techniques [5]. The methodology uses a novel system organization. In contrast to
the usual data-path/controller partition of synchronous systems, a system is
organized into data-path, state-machines. and distributed control structures. Self-
timed data-path circuits are built using logic gates, pass-transistors, and matched
timing delays. Such an approach yields layouts of almost the same area as for
synchronous construction, and is possible because in VLSI systems, delays of data-
path components can be easily matched by using identical geometry. Also, data-
path components have their own controllers for inter-module timing synchronization.
State-machines and distributed control structures are used together to form the
control part of the system, State-machines test predicates only to guide control flow
in the distributed control, and are simple and fast.

A self-timed router chip [6] has been designed using this approach. The router is a
packet switching device with two input and two output ports. It decodes address bits
of byte-serial input packets and routes them to designated output ports by setting up
and maintaining a link between ports throughout the duration of a packet
transmission. Packets going to different output ports can be processed
concurrently, and any contention for output ports is resolved using arbiters.

The methodology uses a graph model called the Signal Transition Graph for the
direct synthesis of self-timed circuits, A Signal Transition Graph is a directed graph
where v'crtices represent signal.transitions at circuit nodes, and arcs specify static
and dynamic relationships between pairs of transitions. Additional constraints are
included in the graph to permit determination of the circuit (an interconnection of
components). and the logic functions of the components. Two self-timed chips have
been successfully designed using this graph model -- a router chip and a ring buffer
chip.

32

&MPU tA lICN STRUCTURES

5. INTEGRATED CIRCUIT DESIGN AND FABRICATION

Since the use of custom integrated circuit devices is essential to achieving
competiive performance in a dataflow processor, we have developed several

experimental chips using CAD tools available at MIT, and the DARPA MOSIS
fabrication service. The devices chosen for experiment reflect key requirements in
the construction of practical dataflow computers. One is the two-by-two router
which is a building block for packet switched routing networks. The second is a
simple dataflow processing element with 8-bit data words that has given us

experience in implementing all the essential mechanisms of a full-scale dataflow

processor.

T !., flst device constructed [5] was a sc,)led down router with a two-bit data-path.
It was fabricated in 1983 using a 5-micron NMOS process. We have obtained eight

chips from MOSIS. all of which were found to be fully operational at the relatively
slow rate of around 0.7MHz. lhis router was designed using self timed circuits with
extremely conservative expectation of process variations, Dual-rail coding was used
in the data path and control circuits to ensure fully speed-independent operation of
all components. Also, a substantial amount of circuitry was included for test
purposes. and this partly degraded the performance of the router. In retrospect, this
prcjcct was successful in that it allowed verification of the design approach and
produced valuoble feedback.

Our experience with this design inspired development of the new design
methodology described above. Application of the methodology to the two-by-two
ruuter yielded a device [6] with a full 9 bit data path and buffer storage for eight
byt,.s at each input port. It has been fabricated through MOSIS using a 3-micron
CMOCS process, and its speed is estimated to be 5MHz. In this version, control
cicuits are speed independent and data path components are timed by means of
matched delays. All modules are designed so that times for the reset phase of the
tour cycle signaling protocol are reduced to a minimum, yielding a significant overall
sped improvement. Thie layout of the data-path in this circuit is similar to a
synchronous one. We believe the layout of the control is superior to that of the
synchronous design, as the distributed control structures uses less circuitry than a
central controller, and they may be laid out to the same pitch as the data-path.

The simple dataflow processing element was on exploratory design developed as a
course prolect in 1983. It has been redesined and submitted to MOSIS for
fabt-ication. This chip was implemented in tulk CMOS with 3 micron features. When
comtini.d with a ccimercial 2K by 8 RAM chip it forms a simple processing element
that can handle tlhe sequencing of C4 datiflow instructions. Most of the chip area is

occulm d by an eight bit arithmetic logic unit/register array, and several PLA

str c1[ur(-s that mpl.-mont the control functions. The Lffque element is a 64 bit

33

C,_.1PU [Al ION STRUCTURES

erxit)le memory having an integral priority encoder that implements the dataflow
instruction sequencing rules. In a full-scale dataflow processor, the size of the
enable memory will require that it be fabricated as one or more dedicated chips.
Such a specialized device will be the next candidate for experimental design.

6. PERFORMANCE STUDIES

Being very different from conventional computer systems, dataflow computers
require new approaches to performance evaluation. One important aspect is the
manner in which the instructions of a dataflow program are assigned to the

processing elements of the machine so that full performance may be achieved. This
aspect is addressed primarily as a problem of program structure, and compiler
analysis and transformation of programs. The other aspect of performance of the
static dataflow multiprocessor is the manner in which the load placed on the routing
network by the processing elements interacts with the protocol of the routers to
determine the rate at which data flows among the processing elements.

In most of our work we have focused on the packet routing network as an
independent subsystem. In his doctoral thesis [3] G. Andrew Boughton examines the
design of high throughput packet switched networks for interconnecting the
modules of a large digital system such as the processing elements of a dataflow
computer. The design of such networks is studied under two different sets of
assumptions about the implementation technology. The first set corresponds
roughly to present technology where only a small number of network nodes can be
placed on a single integrated circuit chip. The second set corresponds to future
VLSI technology where a lirge number of network nodes can be placed on a single
chip.

Under the first set of assumptions, network structures based on the indirect n cube
topnlogy are studied to determine the factors limiting the performance of very large
ntv,orks. For this purpose the load on the network is assumed to be generated by
independent packet sources at each input port with uniformly distributed packet
destinations. For such SOUrCeS, the strongest constraint examined still allows the
throughput of the network to grow linearly with the number of network inputs.
However. we show that conditions can arise in the operation of moderately large
networks (around a thousa'nd inputs) such that some network inputs accept packets
at lss than half the average input rate for a long period of time, The design of
networks where the sources generate a nonuniform distribution of packet
destinations is examined briefly.

For network irmplementations where many nodes are built into a VLSI chip, we
dorive a minimum wire cost proportional to the square of the number of network
inputs, shown for networks calipable of high performance for certairr uniform patterns

34

..j/rMltJ [I Si S [AIS AND COMMUNICAI ION

3.2. Packet Trains for Network Workload Modeling

For network modeling and simulation. it is essenti2! to know the right model for
packet arrivals. The traffic meusurroments on ti~e LCS token ring show that the
packet arrivals do not follow the commonly used model of Poisson arrivals which
assumes that packets arrive independently and that the arrival of a packet gives no
clue about future arrivals. A more realistic model called packet trains has been
proposed by Raj Jain, in which all packets of a file transfer form a train. The inter-
packet interval between successive packets of a train has a distribution very different
from inter train interval. The former is a characteristic of the higher level protocols
and system configurations while the later depends solely on user behavior. After the
arrival of a locomotive (the first packet) of a train subsequent packet arrivals can be
predicted with very little variance. Protocols that exploit this dependence of packet
arrivals. e.g., reservation sharing, can be designed to use resources more efficiently
than current ones which are optimized for random Poisson traffic.

3.3. High-bandwidth Residential Networks

A second network technology effort is just beginning this year: exploring the use
of commercial cable television systems as a high-bandwidth local network
technology that can reach the home. The primary progress on this topic has been to
develop, in concept, techniques that can deal with the analog environment of the
typical CATV system. It now appears that a promising approach is the use of spread-
spectrum modulation techniques, for four reasons. First, spread-spectrum pi ovides
compatibility with miscellaneous services already in place on the same cable.
Second. the anti-jamming properties of spread-spectium modulation provide a
counter-measure to deal with extreme interference from short-wave broadcasts in
the frequency bands available for two-wa.y data commlunications. A third property,
that spread-spectrum signals are well hidden from non-spread spectrum receivers,
may also be useful in allowing data signals to use radio freCluencies on the cable that
have been set as:de to protect nearby aircraft communications. Finally, the spread-
spectrum code division multiple access technique may be an effective alternative to
carrier-sense or token-passing as a channel access control technique. The
theoretical properties of spread-spectrum modulation for this application all are
sufficiently promising that it is time to begin a more detailed study. perhaps
undertaking a modem design in the coming year.

49

COMPUTER SYSTEMS AND COMMUNICATION

review, the proNET ring is a commercial version of a 10 Mbit/sec token ring local
area network designed by this research group and reported in detail in previous
reports. Its primary innovative feature is a star-shaped topology with a passive
wiring center intended to make maintenance easy and availability very high. The
LCS installation currently covers three floors of the building using four
interconnected wire centers. Although the installation is mostly done with twisted
pair, there is one experimental fiber-optic section. There are 30 Vax 11/750 and
11/780 computers, five LSI-11's, a Bridge CS/1, and 3 IBM PC's connected to the
ring. The Bridge CS/1 and several of the LSI-11's act as gateways to other local
area networks, chiefly an experimental (3 Mbit/sec) Ethernet, a standard Ethernet,
the ARPANET, and a serial-line network.

Preliminary observations of the monitoring station appear in a Master's thesis by
Feldmeier, also available as an LCS Technical Memorandum. Some of the more
interesting results are the following:

" Packet traffic is between 1 and 2 million packets/day. The ring is thus in
production use, a vital link in the Laboratory's resources.

" Load distribution is very similar to that reported by Shoch and Hupp at
Xerox. with the difference that the individual nodes at MIT seem to
generate about three times as many bits/second/node. Two possible
explanations of this more intense traffic are that the MIT site has more
remote paging, and that the Vax 11/750 computers are more powerful
than the Xerox Alto, so they can make more frequent demands on the
network.

" Internetwork traffic is some 40% of the total traffic on the ring. This
large number may have important implications for gateway design and
generally for internet plans, although it is hard to tell whether it would be
similar in other environments with less diverse communications
facilities.

" The distribution of packet interarrival times is decidedly non.Poisson:
shorter interarrival intervals have much greater than Poisson
probabilities. This observation has led Raj Jain to explore a network
packet arrival model called "packet trains" reported below.

" "Network unavailable time," which accumulates whenever a token is
continuously absent for more than one second, averages 5 to 10
seconds per 24-hour day. Since all reconfiguration and repair of the
network at LCS is done without turning off the network or the monitor,
this small number suggests that the star configuration is extraordinarily
effective in providing high availability.

48

COMPUTER SYSTEMS AND COMMUNICArION

4) Implement discretionary or non-discretionary controls in the accessible
internal resources as needed.

In summary, the gateway authenticates, labels, and maintains information on
category sets while most of the rest of the world can go on unchanged.

2.3. Experimental Implementations

We have implemented two components of a mail-relay gateway suitable for inter-
organization connections.

Don Gillies implemented a secure mail relay on an IBM Personal Computer as an
undergraduate thesis project. The mail relay was inspired by the needs of the
Laboratory for Computer Science Headquarters. which had a new office automation
program for their Unix system. They wanted to connect to the rest of the MIT
computer network, but also wanted to protect their sensitive research accounting
data. The same basic software design should b, usable in the planned MIT-to-IBM
mail relay connection.

The mail relay is built on top of the CSC Group's PC/IP protocol implementation
for the IBM PC. It contains a new a multi-connection TCP, user and server SMTP,
and a reliable spooling program. It also has security mechanisms that leave audit
trails, that detect unusually heavy mail traffic, that halt messages with suspicious
ascii characters, and that record attempts to speak unauthorized protocols through
the relay. The fu!l design is explained in the thesis.

The second component (also implemented by Gillies) is mail-filtering software
running on a Vax. This facility can be tailored to implement higher-level policies
(e.g., no transit) for mail traffic that enters the network via the gateway.

By connecting the mail relay to an internal local area network on one side, and a
telephone line on the other, we can implement a controlled, inter-organization, mail
network. All messages that arrive over the telephone line can be sent to the Vax for
higher-level filtering. In addition, we can use a link-level protocol that authenticates
the origin of packets that arrive over the telephone line.

3. LOCAL AREA NETWORK TECHNOLOGY

3.1. Ring Network Monitoring Results

The primary progress this year on the ring network research project was bringing
into service of a ring network monitoring station, built by David Feldmeier, and the
beginning of systematic collection of data on the proNET token ring network. In

47

COMPUTER SYSTEMS AND COMMUNICATION

2) The administration of most internal networks is intentionally
decentralized. Consequently. it is very difficult to assure conformance
with new policies such as tight controls on accessibility of internal
resources to outsiders.

3) Internal networks grow incrementally by adding connections to other
internal networks as well as single machines. It is hard to check if such
additions introduce resources into the internal network that do not
conform to network-wide policy.

4) In order for users to enforce a sccurity policy they must be educated as
to its purpose and operation. Educating all users of a decentralized
network is hard to accomplish once, let alone cvery time an external link
is established.

These conditions suggest the use of non-discretionary access controls to isolate
strictly-internal resources without relying on the discretion or explicit action of
strictly-internal resource owners.

However, the controls needed differ from traditional non-discretionary controls in
two important ways:

1) We want to control invocation of strictly-internal computer-based
resources. Most of the literature on non-discretionary controls is
concerned with control of information flow only.

2) We want to protect the owner of the service being invoked. Most of the
literature that does concern non-discretionary controls on invocation is
concerned with protecting the integrity of the invoker only.

Despite these differences, it seems that with a few modifications, the traditional

non-discretionary control policies can be used in this environment:

1) Define special network entry points (gateways).

2) Implement non-discretionary invocation controls on incoming traffic in
the gateway(s) using category sets and the following Intei-sect rule: user
A can invoke resource B if and only if C~a Intersect (C~b is not equal to

0).

3) Include authorized outsiders in the category sets of internal resources
that the organization wants to make accessible to outsiders. Assign a
null-set category set to resources that are to remain strictly internal, so
that no one will be able to access them via the gateway (internal users
can still get to them since they do not do so via the gateway).

46

COMPUTER SYSTEMS AND COMMUNICATION

ION-iransaction Mechanism
I
V

+ Efficiency
+ Capabilities
- Oversight
+ Specificity

I

V V
+ Intensity + Penetration
+ Scope + Idiosyncrasy

Production I I Level of
cost I decision
advantage --- > < ---- making

V V
+ Market governed + Formalization and

activities controls
+ Market size - Market size

The model is being tested in one domain, industrial and academic research and
development laboratories.

2.2. Security Requirements and Technical Mechanisms for Inter-
Organization Networks

These interconnections raise new and interesting security requirements. Unlike
traditional security requirements, the goal is not to prohibit access by outsiders;
some outside access is explicitly desired. However, because potential users are
outside the boundaries of the organization, they should not be treated as insiders
and the potential damage of undesired access is high.

Beefing up security on all internal systems/resources is not an attractive, nor
feasible, approach. The set of resources that an organization wants to make
accessible is significantly smaller than the set that it wants to remain strictly internal.
Therefore. these strictly-internal resources should not be required to take action in
order to be protected from external access. Such a requirement is inappropriate for
several reasons:

1) Typically. the purpose of an internal network is to facilitate
communication and resource sharing. Increased internal usage
controls that are tailored to restrict outsiders may interfere with this
objective.

45

COMPUTER SYSTEMS AND COMMUNICATION

1. INTRODUCTION

Rearrangements of Computer Systems Group boundaries occurred in 1983-84,
with the result that the area reported under this title is substantially smaller than in
past years. The research projects of the group now tall in three categories: inter-
organization networks, local area network technology, and network services. The
next sections describe these three areas in turn.

2. INTER-ORGANIZATION NETWORKS

During the past year Deborah Estrin continued her doctoral research on the
interconnection of computer networks across organization boundaries. This
interdisciplinary research encompasses both effects on organizations and new
technical requirements.

2.1. Impact on Inter-organization Relationships

When two or more distinct organizations interconnect their internal computer
networks to facilitate information and resource exchange, they form an Inter-
Organization Network (ION). Ms. Estrin has developed a model of how IONs impact
organizations and inter-organization relationships. For a given domain, the model
predicts whether IONs favor vertical integration or de-integration (e.g., make or buy,
internal development or joint ventures), and market concentration or competition, for
example,

Inter-Organization Networks are a new type of transaction mechanism that support
new communication and interchange patterns among organizations. The new
interchange patterns in turn support new governance structures. Greater intensity
and scope allow more activities to be carried out efficiently across the organization
boundary (i.e., in the market); in addition, interchange can be managed efficiently
with a larger set of organizations (i.e., a larger ltual market). However, increased
penetration and idiosyncrasy of interchange may lead organizations to adopt more
formal governance structures (e.g., contracts) and preclude interchange with an
expanded number of market members. The outcome of these antagonistic factors
depends upon factors exogenous to the ION: the production cost advantage of
carrying out an activity in the market as opposed to internally within the firm; and the
level of decision making attention applied to the interconnection. The model is
described in the figure below.

44

COMPUTER SYSTEMS AND COMMUNICATION

Academic Staff

F.J. Corbato J.H. Saltzer, Group Leader
D.P. Reed M.V. Wilkes

Graduate Students

D.L. Estrin K. Koile
D.C. Feidmeier

Undergraduate Students

D.W. Gillies M.L. Lambert
F.S. Hsu D.J. Karison
E. Jaeger J.L. Romkey

Support Staff

N. Lyall M.F. Webber

Visitors

R.K. Jain B.G. Lindsay

COMPUTATION STRUCTURES

11. Lim, W. Y-P. "The MIT Data Flow Engineering Model," IFIP Congress,
9th World Congress, Paris, France. September 1983.

41

COMPUTATION STRUCTURES

6. Theobald, K. "Adding Fault-Tolerance to a Static Data Flow
Supercomputer," S.M. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected January 1985.

7. Wanuga, T. Routing Performance in a Static Data Flow Computer," S.M.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected January 1985.

Talks

1. Dennis, J.B. "Design Issues in Functional/Applicative Programming
Languages," MIT Data Flow Workshop, Dedham, MA, July 1983.

2. Dennis, J.B. "Non-determinate Computation Using Streams and
Guardians," MIT Data Flow Workshop, Dedham, MA, July 1983.

3. Dennis, J.B. "Type-Checking and Inference for VimVal," MIT Data Flow
Workshop, Dedham, MA, July 1983.

4. Dennis, J.B. "Architectural Abstraction," Summer Study on Methods for
Improving Software Quality and Life Cycle Costs," NAS Summer Study
Center, Woods Hole, MA, July 1983.

5. Dennis, J.B. "Data Flow Ideas for Supercomputers," Conference on the
Frontiers of Supercomputers," Los Alamos, CA, August 1983.

6. Dennis, J.B. "Language- Based Design of Computer Systems," for the
short course: "Software-Oriented Computer Architecture," Boston, MA,
November 1983.

7. Dennis, J.B. "The TX-O at MIT," The Computer Museum, Marlboro, MA,
November 1983.

8. Dennis, J.B. "Vim: An Experimental Computer System Supporting
Functional Programming," Conference on High-level Language
Computer Architecture, Los Angeles, CA, May 1984.

9. Dennis, J.B. Remarks in accepting the 1984 ACM-IEEE Eckert-Mauchly
Award, Ann Arbor, MI, June 1984.

10. Gao, G-R. "Maximum Pipelining of Array Operations on Static Data Flow
Computers," 1983 International Proceedings on Parallel Processing, Bel
Air, MI, August 1984.

40

COMPUTATION STRUCTURES

Static Data Flow Machine," 1983 International Conference on Parallel
Processing, Bel Air, MI, August 1983.

3. Dennis. J.B., Lim. W. Y-P., and W. B. Ackerman, "The MIT Data Flow
Engineering Model," Proceedings of IF/P 9th World Congress, Paris,
France, September 1983.

Theses Completed

1. Ackerman. W.B. "Efficient Implementation of Applicative Languages,"
Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, April 1984.

2. Kuszmaul, B. "Type-checking in VIM-VAL," S.B. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA, May
1984.

3. Brock, J. D. "Formal Model of Non.determinate Data Flow
Computation," Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, August 1983.

Theses in Progress

1. Boughton, G.A. "Routing Networks for Packet Communication
Systems," Ph.D. dissertation, MIT Department of Electrical Engineering
3nd Computer Science, Cambridge, MA, expected September 1984.

2. Chu, T-A. "A Design Methodology for Self-timed VLSI Systems," Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected June 1986.

3. Gao, G-R. "A Pipelined Code Mapping Scheme for Static Data Flow
Computers," Ph.d. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected
December 1985.

4. Guharoy, B. "Memory Management in a Static Data Flow Computer
System," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected May 1985.

5. Jaganathan, S. "Guaranteeing Data Security in a Dynamic Data Flow
Machine," SM. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected January 1985.

39

COMPUTATION STRUCTURES

References

1. Ackerman. W. and Dennis, J.B. "VAL -- A Value-Oriented Algorithmic
Language: Preliminary Reference Manual," MIT/LCS/TR-218, MIT
Laboratory for Computer Science, Cambridge, MA, June 1979.

2. Ackerman, W.B. "Efficient Implementation of Applicative Languages,"
Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, to appear.

3. Boughton, G.A. "Routing Networks for Packet Communication
Systems," Ph.D. dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, to appear.

4. Bryant, R.E. "Report on the Workshop on Self-timed Systems,"
MIT/LCS/TM-166, MIT Laboratory for Computer Science, Cambridge,
MA, May 1980.

5. Chu, T-A. "The Design, Implementation and Testing of a Self-timed Two
by Two Packet Router," Computation Structures Group Memo 225, MIT
Laboratory for Computer Science, Cambridge, MA, February 1983.

6. Chu, T-A. "Design of a Self-Timed Router Using Signal Transition
Graphs and VLSI Techniques," to appear.

7. Dennis, J.B. "Data Should not Change: A Model for A Computer
System," CSG Memo 209, MIT Laboratory for Computer Science,
Cambridge, MA, July 1981.

8. Gao, G.-R. "An Implementation Scheme for Array Operations on Static
Data Flow Computers. S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1982.

9. Seitz, C. "System Timing," ' in An Introduction to VLSI Systems, Chapter

7, Reading, MA, 1980.

Publications

1. Dennis, J.B. "Data Flow Ideas for Supercomputers," Proceedings of
CompCon '84 28th IEEE Society International Conference, February-
March, 1984.

2. Dennis. J.B. and Gao G-R. "Maximum Pipelining of Array Operations on

38

COMPUTATION SI RUCTURES

A program in VIMVAL can be translated into a dataflow graph and the local
constraints the program places on the types of its expressions can be described in
terms of the class of regular sets which satisfy an operator's type requirements.
Type correctness can be defined in terms of the number of regular sets which satisfy
every operator's type requirements: a program is type correct if there is exactly one
regular set satisfying all the type requirements of all the operators in a program.
Type correctness is well defined in terms of mathematical set operations. Type
correctness has been shown to be decidable, and an efficient type checking
algorithm for VIMVAL has been developed on the basis of this theory.

10. BACKUP AND RECOVERY ISSUES IN VIM

We wish to provide a backup and recovery system for VIM that will guarantee the
security of all online data. We envision 'hat incremental backup information will be
maintained on some stable storage device -- stable disk -- with older backup
information being held on tape storage. The objective is that, following loss of data
due to hardware failure, full recovery of the system to the situation prevailing just
prior to the fault is possible. That is, users will be able to continue as if no fault had
occurred except for the loss of a few characters from terminal input/output buffers.

An interesting approach is made possible by the applicative nature of the VIMVAL
language: since reexecution of any procedure that is a function is guaranteed to
produce the same results. even in the presence of arbitrary concurrent
computations. it is not necessary to back up intermediate states of function
evaluation: only the arguments of the invocation need be saved. This concept
becomes more intricate as one considers data structures and stream-oriented
computation. Of course, guardians, the mechanism provided in ViM for implementing
nondeterminate computations, must be treated carefully. These issues are the
subject of master's thesis rcsearch in progress by Suresh Jaganathan.

37

COMPUTATION STRUCTURES

Therefore we are examining the issues involved in implementing a paging
mechanism for VIM with a small page size. The unit of transfer between the main
store and thc disk is called a chunk and its size has been set at 32 words for our
present experimental design.

Bhaskar Guharoy has designed representations for the principal structured data
types of Vim -- arrays and records -- to permit efficient operation of the storage
management system. A large array or nested record structure is represented as a
tree of chunks. In this representation. data structures may share common
substructures, and the basic operations of accessing an element or creating an
altered version of a structure can be done in log(n) steps for a structure of n
elements. Furthermore. a full (modified) copy of a data structure may be made in
log(n) time.

The design of VIMVAL and its implementation is such that circular structures are
never created during system operation. This acyclic property of the data structures
permits use of a reference count based storage reclamation mechanism.

9. THE VIM TYPE SYSTEM

A type system has been developed for the revised version of the VAL programming
language (VIMVAL) in a bachelor's thesis completed by Bradley Kuszmaul. The type
system is designed so that users of VBMVAL may omit type declarations from their
programs whenever the type of an expression can be determined by the compiler.
The system combines several ideas that have been found to be worthwhile in
advanced language designs. To start with. VIMVAL includes higher order functions,
that is, functions are "first class objects" and may be passed as values and built into
data structures. The type system allows programs to be written with incomplete type
specifications, and the type checker infers the types of expressions from their
context. The types of some expressions may remain undetermined even after
program compilation. This allows the binding of types to be deferred until the module
is linked to other modules to create an executable program. At that point all types
must be determined, for we wish to exclude the possibility of discovery of type errors
during program execution. This aspect of the type system allows program modules
to be "polymorphic" .- a module may perform analogous operations on different
types, according to the modules linked to it.

The thesis develops a theory of types which aoplies to a large class of
programming languages, including VIMVAL. The notion of type is defined in terms of
regular sets. which describe seCluences of legal operations on a value of a given
type. Recursive types allow infinite sequences of legal operations, so the definition
of types allows infinitely long sequences to be elements of the regular sets
describing a type.

36

COMPUTATION STRUCTURES

of communication. Networks are presented that come close to supporting the
desired level of performance using the specified amount of wire. Networks for other
patterns of communication are also briefly discussed.

Research is beginning on how the routing network influences performance of the
static dataflow machine. The effects of packet ti afftc flow patterns generated by the
program workload on the throughput of the routing network (as well as the rest of
the machine) are being examined. From the results of this analysis, possible
methods for improving the performance of the routing network are being considered.
Initially, the structure of the routing network is being restricted to the indirect binary
n-cube, and the program workload is being restricted to the class of pipe-structured
programs.

7. GENERAL PURPOSE DATA FLOW COMPUTING: THE VIM
PROJECT

The Computation Structures Group is developing an experimental advanced
general purpose computing system based on the principles of dataflow computation
and functional programming and using the model of computation proposed by
Dennis [7]. The prototype for such a system is the VAL Interpretive Machine or ViM.
The high-level functional programming language chosen for this project is VIMVAL, a
revision and extension of VAL [1]. Our current work on ViM covers three areas: the
development of a comprehensive memory system for supporting VIMVAL data
structures: dcvelopment of a simple but general type system for VIMVAL using type
inference; and the devclopment of specialized backup and recovery procedures for
ViM.

8. VIM STRUCTURES

The physical storage system of VIM consists of a semiconductor main store and a
disk. A common virtual address space is provided to all users to facilitate the
sharing of programs and data. Ideally, the only information brought from the disk into
the main store should be the logical units of information -- such as records and
arrays -- which are referenced by the computation. A large page size is undesirable
because inefficient memory use results when independent logical units are packed
into the same page. In conventional systems a small page size is troublesome
because the large page traffic cannot be handled efficiently. In particular, the
overlapped executfon of several page accesses for one computational process is
generally impractical.

In the case of ViM, the concurrency of the dataflow program execution model
makes the overlapped handling of page accesses much easier to consider.

35

COMPUTER SYSTEMS AND COMMUNICATION

4. NETWORK SERVICES

4.1. Personal Computet Networking: PC/IP

Work continued on the development of network programs for the IBM PC. This
year, several new programs were written, including one that displays all packets sent
on the Ethernet. which is useful for debugging. Other programs placed in service
include a file transfer server package. a remote printing user interface, and an
interface to the ARPANET Network Information Center name directory. A major
program which was finished was an implementation of RVD, the Remote Virtual Disk
protocol, for the IBM PC. RVD was developed by LCS to permit shared (read only')
disks and large private disks on Vaxes that actually have only small ones. The PC
implementation allows ten RVD drives on one machine, making it possible to have
tremendous amounts of data accessible. In the current implementation, disk
accesses are about as fast as a floppy disk. A drawback of the current
implementation is that no network programs (most important, TFTP) can write to an
RVD disk because of contention for the network interface. The problems are mostly
caused by the unusual structure of the programs and awkward integration of the
network with the PC DOS operating system. Another major addition this year was a
driver for the proNET ring interface for the IBM PC. John Rornkey worked on the
programs and the RVD implementation.

A major release of the source language versions of the PC network programs was
made, dated February 1. The release included most of the work done prior to RVD,
binaries of all the programs, the User's Manual and the Programmer's Manual. It
was 2.8 Mbytes long. Copyright messages in the code grant permission to do
anything except remove the copyright messages. Over 50 copies have been shipped
at a $45 fee that covers the cost of a tape, duplication, and postage. Handling of the
distribution was done largely by Muriel Webber.

4.2. On-line Directory System

Kimberly Koile completed *a Master's thesis describing the design and
implementation of an online directory assistance system called DIRSYS. The
system. designed for use by members of the MIT community, has an incremental
interface that combines features of a paper telephone book with those of a full-
screen editor such as Emacs. Each directory entry is displayed in a compact one
line per entry format, as are entries in a paper telephone book. Since more
information is available for each entiy than in a paper telephone book, a command is
a 3ilable for changing entries into a more expanded format in which additional
information is displayed.

Users may "browse" through this electronic telephone book by issuing commands

50

(A II I 11t' i k rI t t Ara I' . I t j

b(M11la1 to [m C ~rsor mo:(corards or they ma. y -,,,irchr far o t erlic naime
by t~piog the naime. After ealch lutter that th e user tI vs Dfl'-Y'; moves thre

":'!;0t ho mean:; of em s an entr,, lo the' on" -, whose ar str ing most
closcly matches what the user hats typed so far. This incf(:nettal seairch nrech runisml
is similar to that used in Emacs. Thu system- pr nvidcs a hop faciliy with two L vets:
the hi,;t)eve) reminds users of which cornrds are avatlable: the ,ocond level
descr'bes the function of a specified command ini detail. A tutorial is available tor
users who want a very detailed doscription ot tihe systemn.

Finally. DIRSYS provides a facilityj for keping the infr nation in the directory
dataibane , up-to-date. A user may sUbrIrit vp~ or tsi hich contamin irioristion
about mudiliciAtioms to his directory entry. to the DIP SYS rnaoagec' VWhk-i the Update
requests have been valiklated, the informnatiorn conta)ined in tlw'm is n~(o, ioraIted into
the directory database by an upda7te daerrrn. a program thatl ru11S ceroy night to
update thle database.

A preliminary evaluatlion of DIfiSYS indicates; that the stcr cn I,,, ucad easily by
both inexperienced and exprienced computer users. DLiils of the ewvIltion were
descr Led in) the thesis. The lear ning aids gu>i!o the novice V)irou! encurmbering the
c.-perier rccd user. The cornrrmrrds ire biruple, easy io use, andc consistently

tepee.The systcrm provicles- prompts ar at polite,.d:nlvereste to the
usecr. It olso is ro[Just ini that it is very diffircult to cause DIRSYS tu fail iao operate.
Finrally, individuals wh-o used DIRSYS seemed to enjoy usingj the :;ystem, even
Ii rUgh the system ro.;ponse was Jew at tii-ncs, arrd agreed ihat at diretory -system)
such as [)IRSYS would provide a carrvcnierrt ser vice for use both insid- aLind OLtside(
the MIT community.

Doris Karlson, in) an rrnrergrrldu-ate thesis, explored the possibility of a search
based orr name sounrds as an alternative to the increment:) se arch of DW;7SYS. A
modified version of the Soundex indexing syAemi was tried on the N1ll directory
database. Statistics heom that database suggest two thirrgsj: 1) A otr sophisticated
indexing system tharn Soundex seemsq necessary for reasor rLb'e hurnmn gineering,
because the Soundex systemn tunds to index too many namceu' that do rrot SOLuund alike
in the same category; and 2) The trequency at similar-souncding nanmes in a file of
20,000 entries is large enough thit display of mrote than on) name p~er linre, 20 lines
pet display is requited.

4.3. Analysis of Timeout Algorithms for Pack~et Ret ransni:,sion

Almost -ll networlking and distriburted systems protocols have to Copo with the
problem of determining whe-tn a node should retransmrit a prr(;ket that Ii::: riot been
acknowledgad. A bkit tiMeout algorithm may either flood thre network withi durplicate
copies of parwkets arid lead to uriwanteri congr-,tion or it may take too long to

51

COMPUTER SYSTEMS AND COMMUNICATION

retransmit a packet. An analysis of various timeout algorithms shows that during
period of congestion (repeated packet loss), most timeout algorithms would either
diverge to cxtrcmcly high timeout intervals, or converge to a rather low timeout
value. In either case, the throughput may be reduced to virtually zero or the circuit
may be disconnected prematurely. Raj Jain did a simulation study of a variety of
timeout algorithms and has compiled a list of guidelines for designing such
algorithms and for setting parameter values.

52

COMPUTER SYSTEMS AND COMMUNICATION

Publications

1. Comer, M.H. "Loose Consistency in a Personal Computer Mail System,"
SM. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1983. Also MIT Laboratory for Computer
Science Technical Report, MIT/LCS/TR-316, June 1984.

2. Feldmeier. D.C. "Empirical Analysis of a Token Ring Network," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, January 1984. Also MIT Laboratory for
Computer Science Technical Memorandum, MIT/LCS/TM-254, January
1984.

3. Koile, K. "The Design and Implementation of an Online Directory
Assistance System," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, December 1983.
Also MIT Laboratory for Computer Science Technical Report,
MIT/LCS/TR-313, December 1983.

4. Estrin, D. and Sirbu, M. "Cable Television Networks as an Alternative to
the Local Loop," to appear in Journal of Telecommunications Networks
(1984).

5. Saltzer, J.H., Reed, D.P. and Clark, D.D. "End-To-End Arguments in
System Design," to appear in ACM Transactions on Computer Systems,
(November 1984).

Theses Completed

1. Comer, M.H. "Loose Consistency in a Personal Computer Mail System,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1983.

2. Feldmeier, D.C. "Empirical Analysis of a Token Ring Network," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1984.

3. Frankston, C. "The Amber Operating System," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

4. Gillies, D.W. "Improved Network Security with a Trusted Mail Relay,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1984.

53

COMPUTER SYSTEMS AND COMMUNICATION

5. Karlson, D.J. "Soundex Searching in an Online Directory Assistance
System," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1984.

6. Koile, K. "The Design and Implementation of an Online Directory
Assistance System," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, December 1983.

Theses in Progress

1. Estrin, D.L. "Inter-organization Networks," Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science,

Cambridge, MA, expected September 1985.

2. Jaeger, E. "Third Party Access Control and Accounting Schemes," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1984.

Conference Participation

1. Estrin, D.L. Technology for Meaningful Work, Institute of Policy Studies,
Allentown, PA, April 1984.

2. Estrin, D.L. IBM-MIT Workshop on Security, Boston, MA, May 1984.

3. Saltzer, J.H. Chairman, ACM Ninth Symposium on Operating Systems
Principles, Bretton Woods, NH, October 1983.

Talks

1. Corbato, F.J. "System Issues in Project Athena," Panel discussion,
Ninth ACM Symposium on Operating Systems Principles, Bretton
Woods, NH, October 1983.

2. Saltzer, J.H. "Inter-organization Links and Community Networks,"
presented at ILP Symposium on "Networked Computer Systems," MIT,

Cambridge, MA, May 14, 1984.

54

DISTRIBUTED COMPUTER SYSTEMS

Research Staff

L.W. Allen M.B. Greenwald
D.D. Clark, Group Leader E.A. Martin

Graduate Students

R.W. Baldwin P. Ng
J.C. Gibson K.R. Sollins
W.C. Gramlich L. Zhang

Undergraduate Students

D.A. Bridgham M.A. Rosenstein
E.D. Crisostomo H.J. Shinsato
T.H. Kim E.H. Siegel
J. Leschner G.D. Skinner
M.B.Macaisa J. Spurlock
J.L. Romkey C.A. Warack

Support Staff

S.C. Comfort E.L. Felix

Visitors

A.J. Herbert

DISTRIBUTED COMPUTER SYSTEMS

1. INTRODUCTION

The Distributed Computer Systems Group is a new group this year, formed from
certain members of the Computer Systems and Communications Group and the
Computer System Structures Group. The major project of this group has been the
development of the Swift Operating System, but there are a number of other projects
which are described in the sections to follow.

2. SWIFT

2.1. Project Summary

The Swift Operating System arose out of our earlier research in the implementation
of network protocols. Recurring performance problems with protocol software led
us to the conclusion that there was an underlying problem more general than
specific design flaws in certain protocol suites. Our conclusion was that existing
operating systems, such as Unix, failed to provide the correct run-time support for
highly interactive parallel software packages such as protocols. Swift is intended to
demonstrate that proper support for this kind of software can be easily supplied.

The most novel aspect of Swift is the general structure provided for inter- and intra-
process flow of control and information. Swift supports a programming style loosely
built around two interrelated concepts, multiprocess modules and upcalls.

In traditional systems, the supervisor consists of a set of entry points which are
invoked by the application program. That is, the ap, 2ation makes a subroutine call
to a lower level, which performs some service for the application and then returns.
In a network driven environment, most of the actions are initiated, not by the client
from above, but by the network from below. Therefore, the most natural flow of
control is not down from above but up from below. Most systems support this
upward flow of control poorly. using either a very inefficient interprocess message to
achieve this upward flow, or a very efficient but unstructured interrupt. Our system
permits subroutines to be arranged so that the natural flow of control can either be
up from below or down from above. Permitting control to flow in a natural direction
eliminates many unnecessary process schedulings within software such as network
protocols, and has in some cases permitted a tenfold reduction in the bulk of the
code, as well as a tenfold increase in its performance.

The upcall strategy eliminatos process switching as a means of invoking a software
module such as a protocol layer. Traditionally. a protocol layer would be organized
as a separate process, but now it is organized as subroutines which live in a number
of processes, each callable as appropriate from above or below. There must thus be
a mechanism for these various subroutines to share state in such a way that the

56

DISTRIBU I ED COMPUTER SYSTEMS

function of a particular module is carried out. For this purpose, Swift uses the
operating system mechanism called a "monitor," a shared data object whose lock is
managcd by the system itself. Subroutines in different processes that collaborate
with each other constitute a multiprocess module. Swift supports a programming
style in which interprocess communicatir" is never used as a way for one module to
invoke another, but rather interprocess communication is only used within one
module, through the mediation of the monitor locks.

Programs written using the philosophy of upcalls and multiprocess modules turn
out, if written by sophisticated programmers, to be very simple, short and efficient.
However, these tools, in the hands of tasteless programmers, have the possibility of
creating the parallel programming equivalent of Fortran "spaghetti code." One of
the concerns of our research is developing constraints on the programming style
which lead to coherent and readable programs without severely impacting the
efficiency and natural structure of the code.

There are two other features to Swift which, along with these new ideas for
program structure, distinguish it from other operating systems. The first of these is
the support which Swift supplies for real-time support, and the other is the support
for management of its address space.

Swift is concerned with tasks such as network protocols, which involves
scheduling a number of small computations to run in the 1-10 millisecond region.
For this reason, the operating system that supports this task must have something in
common with a real-time operating system, rather than a general purpose time-
sharing system. Swift contains a task scheduler which assigns a priority to tasks
based on the real-time deadline of the task, measured in milliseconds. This rather
sophisticated scheduler is integrated into the monitor lock facility, so that a high-
priority task encountering the lock set by a low-priority task can promote the low-
priority task to run until such time as the lock is released.

The other important feature of Swift is its approach towards management of its
address space. There are, historically, three ways toward dealing with the address
space in an operating system. The first, typified by Multics, provides a multiple
address space environment, with a very rich set of tools for sharing data between
these address spaces in a controlled manner. This provided efficient interprocess
communication, but required special hardware support which limited the portability
of the system. The second, typified by Unix, provided a multiple address space
environment with limited tools for sharing between them. The elimination of
sophisticated sharing mechanisms meant that there were no special hardware
requirements for support of the system, so it could be easily ported onto new
machines. but it meant that highly parallel computations were very difficult and
inefficient to program on the system. For Swift, neither of these approaches

57

DISTRIBUTED COMPUTER SYSTEMS

appealed to us. We could not tolerate the inefficiency of a Unix-like interprocess
communication mechanism, and we were riot interested in a system with strong
requircments for specialized hardware support. Swift thus chose a third option for
address space management, which is to put all the computations of the system into a
single large address space. Clearly, this requires no special hardware support, and
it certainly provides very efficient communication between different tasks. The major
drawback of this approach, which is almost overwhelming, is that the broad sharing
of a single address space means that program bugs cause corruption of arbitrary
parts of storage, leading to crashes which are almost impossible to debug. We thus
set ourselves a goal of building a single address space operating system with
sufficient restraints that program development and execution would be stable and
predictable, even though each task address space was nominally shared with all of
the other tasks on the system.

The approach we took to this is to program Swift in a language which -uses compile
and run-time checking to detect erroneous references to memory and other similar
bugs. Specifically, we have implemented Swift in the CLU programming language.
CLU performs such tests as bounds checking for array references, and most
important it prevents the use of an arbitrary bit-pattern as a pointer, so that
references through arbitrary bit-patterns cannot corrupt unexpected locations in
memory.

The most insidious bug which can arise in a system such as this is the use of a bad
pointer, not because the pointer has been created incorrectly, but because the
pointer points to a location in memory which has been de-allocated and reused. This
can easily happen in a multi-task environment, if one task believes that an object is
no longer needed, while another task continues to use that pointer. The only way to
avoid this class of bug is to take de-allocation of storage away from the application
and perform it in the system. This is the function called Garbage Collection. One of
the challenges of the Swift system is to develop a garbage collector suitable for the
operating system environment.

2.2. Project Status

A major effort effort over the last year has been the moving of the Swift system from
the Vax onto a 68000 processor. This move was necessitated by several
architectural limitations of the Vax, in particular the very inefficient I/0 structure, by
the lack of an all-points-addressable display for the Vax, and by the high cost of the
Vax, which prevented the deployment of the machine in suitable numbers. Swift is
now running on a 68000-based machine which we have assembled out of
commercially purchased cards. In retrospect, a great deal of group effort went into
making usable a machine which was somewhat cheaper than would have been ideal:
however. Swift is now running and we are proceeding with a number of
improvements which were not possible within the Vax version of the system.

58

DISTRIBUTED COMPUTER SYSTEMS

Considerable effort has been invested in the design of a suitable garbage collector
for Swift. Ideally, our garbage collector would have the following characteristics.
First, it is incremental, ccllecting garbage a little at a time while the syster runs,
rather than stopping the system while all of memory is examined. Second, it should
not move objects around as a part of collecting garbage, because I/O devices may
have pointers into memory, which are difficult to find and change arbitrarily. Third, it
should not require a large quantity of additional memory to use as the temporary
storage area for the garbage collection process.

A number of very creative ideas were proposed for the Swift system, taking into
account that the system is intended to run on a desktop workstation or similar node
of a networked distributed system. If we truly believed that network communication
was extremely rapid, then an obvious way to garbage collect one's environment is to
make a snapshot of it and send the snapshot across the net to a cleaning machine
which would send back a laundered version of the address space. However, it
seems difficult to get the necessary throughput across the net. Certain garbage
collection strategies, in particular the one proposed by Dijkstra, seem directly
relevant to what we are doing and have been implemented for trial later this year.
Perhaps the most novel garbage collector we have proposed is the Probabilistic
Parallel Garbage Collector (PPGC). This superficially silly idea involves allowing the
garbage collector to run in parallel with the other tasks, without the traditional
interlocks. This raises the possibility that, under certain very anomalous
circumstances, the garbage collector may declare as garbage something that is not.
However, there are ways that this event can be tested after-the-fact, which means
that the investment of additional bacKground cycles from the machine can reduce to
an acceptable level the probability that we have made an error. Unfortunately, we
cannot come up with any analytical model that tells us exactly what the probability of
failure is. Thus, we are experimenting with PPGC, under a variety of program loads,
to determine under what circumstances errors may arise. It has been difficult to
assess the probability so far, since we have not yet had a single garbage collection
error due to the probabilistic assumption.

CLU, as it is used as an application programming language at MIT, does not have
any dynamic linking capability. That is, one compiles all the programs that are to be
part of the current run, then one statically links them, and then one brings this static
load-image into execution. Swift requires a dynamic linking capability, and over the
last year this has been designed and implemented. We are now testing a dynamic
loader which will bring subsystems into a running CLU environment and dynamically
resolve all of the cross-module references.

A more difficult problem is unlinking the module and removing it from the
environment after it is needed. It could be argued that this step is unnecessary.
However, this will cause the size of the link-image to grow continuously, which

59

DiSrRIBUTED COMPUTER SYSTEMS

means that the memory management algorithm must be more sophisticated than if
modules can be thrown out when they are no longer needed. Since we do not wish
to make sophisticated assumptions about our virtual memory (since we want the
system to be portable onto a wide variety of hardware) and since virtual memory
techniques are fairly well understood. we are concentrating our energy on exploring
the higher- level auestion of whether or not programs can be unlinked and removed
from the address space of the system. either to suspend them while they are running
or to remove them when they are no longer needed. Preliminary design for this
approach is now completed.

Most operating systems provide a file system for their users and Swift is no
exception. However, we were uninterested in writing the necessary device drivers to
permit Swift to support disks. Instead, as part of Swift, we have developed a remote
file system protocol, which permits Swift to utilize file systems stored on other
machines. We have implemented a simple server for this protocol, and the
implementation of the Swift interface is almost complete.

We have implemented a number of test applications on Swift, in order to determine
system performance and to stress the garbage collector. Perhaps the largest is the
text editor Ted, which is a very popular CLU program on both TOPS 20 and Unix. As
soon as the file system is wni king, we will be able to run a fully usable version of Ted
on Swift, which will give us a considerable test of the system's performance.

One of the most interesting applications has always been network protocols
themselves, and we are currently rewriting our earlier implementation of the protocol
package for Swift, in order to improve its performance, and to get more experience
with the proper structure of such programs inside Swift.

2.3. Future Directions

The major implementation effort on Swift will probably finish within the next six
months. At that point there will be a major project review to determine what future
direction the project will take. There are two important questions which we wish to
answer before the project terminates. The first of these is whether we can
understand how to structure programs built around the concepts of upcalls and
multiprocess modules. These concepts give the programmer great freedom, and it
has been noticed in the past that great freedom sometimes leads to very poor
programming style. We thus identify a conflict between our desire for the efficiency
which comes from the these new tools, and the desire to have constraints that lead
to good style. We feel that Swift has taught us some fresh insights about the
construction of multiprocess programs, and we are anxious to understand this in as
general a manner as possible. Second, we are anxious to learn how effectively we
can achieve our goal of supporting reliably a single address space operating system.

60

DISTRIBUTED COMPUTER SYSTEMS

In order to do this we must experiment further with garbage collection and with
linking and unlinking.

In order to achieve these goals, we feel that it may be necessary to implement

additional application programs which utilize the features of Swift. However, the
hardware base on which we run is sufficiently unstable that large-scale software
development is not tractable. We must, therefore, make a decision as to whether we
will move Swift onto yet a third hardware base.

2.4. Related Activities

There are a number of small activities which, although not strictly a part of the
Swift Project. are closely associated with it within our group. These include our
support of Unix. which is used as the program development environment for Swift,
development of a tasking package for the IBM PC which supports many of the same
programming conventions of Swift (most particularly upcalls), and the support of the
Remote Virtual Disk Protocol.

Remote Virtual Disk (RVD) is a protocol which lets one machine attach to a file on a
server machine and to use that file as if it were a disk. Our group initially developed
RVD to expand the disk space on our Vaxes, and the tool has now become a widely
used facility within the Vax-Unix community of LCS. However, the server which we
initially implemented, which was not really intended to provide serious operational
support, needs rewriting in order to be sufficiently robust, and the Computational
Resources Group has undertaken the task of producing and running a better server
for RVD. User programs for RVD exist for Unix 4.2. and for the IBM PC.

3. DISTRIBUTED ARCHITECTURES FOR MAIL

For many users, computer mail has been the most important application of
computer networks. The software for distribution and forwarding of mail is very well
developed at this point, but the software for displaying, generating and archiving
mail is still based on the assumption of a centialized time-sharing machine. The goal
of this project is to develop a user interface to a mail system which is suitable for a
personal computer model of distributing computing.

In the centralized view of mail, each user is served by a particular machine on
which is located the user mailbox, as well as the necessary software to manipulate
this mailbox. The assumption is that the user directly logs in to the machine on
which tihe mailbox is located. The machine containing the mailbox uses some
standard mail forwarding protocol to communicate with other mailbox machines
located around the network. in order that mail is properly forwarded. For this
reason, the mailbox n,,chine must be available as a server on the network essentially
all the time.

6t

DISTRIBUTED COMPUTER SYSTEMS

Since the mailbox machine must operate like a server, it is not appropriate for a
personal computer to be the mailbox machine. A personal computer may be
powered-off much of the time, and even if it is physically powered-on and connected
to a network, may not be able to run server code as a background job.

We have developed a new architecture for mail software, to cope with the
characteristics of a personal computer. Our design divides the traditional functions
of a mail processing node into two parts, the management of the mailbox and the
execution of the user interface software. These functions are implemented on
different machines; the mailbox is stored on a centralized server called a repository,
and the user interface software runs on a personal computer.

The goal of this research is twofold. First, this project is attempting to produce
software that can be used in practice. Several of our existing mail nodes are heavily
overloaded, so the ability to read mail on a personal computer would simultaneously
remove a burden from our centralized time-sharing systems, as well as providing a
mail processing environment which is more responsive and interactive. More
importantly however, this research has a goal of exploring how traditional
applications should be restructured in the context of a distributed computing
environment. Several interesting problems arise, which we cannot yet solve in
general, but which we can explore using mail as a particular example.

The first problem is that the personal computer may not have continuous access to
the data stored in the repository. In fact, the personal computer may be
disconnected from the network much of the time. In particular, we would like to
permit the user to send and receive mail at a time when a network connection is not
open. This will permit a portable computer to be used as an interface to the mail
system. This means that a temporary copy of the user's mailbox must be created in
the personal computer, matching as closely as possible the master copy which is
stored in the repository. We thus have multiple copies of the database describing
the mailbox, which are almost always partitioned, but only occasionally able to talk to
each other. Updates can occur to either copy, and the software must do its best to
keep all of the versions consistent.

The second problem is that the user may wish to interact with the mail system from
a number of personal computers, and he would like to see a consistent view of his
mailbox, no matter which personal computer is acting as a front end. This means
that in addition to the master copy stored in the repository, there may be several
rather than one auxiliary copies, each of which has a slightly different version of the
mailbox in it. This, plus an additional requirement that the system must recover
whenever a personal computer crashes and loses its copy of the mailbox, makes
very difficult the problem of keeping the user's view of the mailbox consistent.

During the last year, we have designed the mailbox repository, the user interface,

62

DISTRIBUTED COMPUTER SYSTEMS

and the protocol which hooks them together. The protocol contains some rather
sophisticated error recovery mechanisms, so that the connection can be disrupted
at an arbitrary point without causing the various copies of the mailbox to diverge in
an irreconcilable manner. We have a prototype implementation of the repository,
and over the next six months we intend to demonstrate a running repository and a
user interface program running on an IBM Personal Computer.

4. NETWORK ROUTING AND RESOURCE CONTROL

Elizabeth Martin continued to study dynamic routing problems in an internet. We
have been participating in the development of the Exterior Gateway Protocol, which
will be used to pass routing information between gateways in the DARPA Internet,
arid have proposed some schemes for dynamic routing within the MIT Internet, a
subsection of the DARPA Internet.

4.1. Exterior Gateway Protocol

The Exterior Gateway Protocol (EGP) partitions groups of gateways in the DARPA
Internet into Autonomous Systems of gateways. The gateways in an Autonomous
System (AS) are programmed, maintained, arid administered by one organization.
Gateways in different Autonomous Systems exchange routing information using
EGP. EGP consolidates the amount of routing information that is exchanged and
provides a more controlled method of passing information between gateways who
may or may not trust each other. Gateways within an AS use their own conventions
for passing routing and up/down information among themselves; these gateways
are free to experiment with different routing algorithms.

Defining rules for the internet routing topology and for the dispersal of routing
information that prevent routing loops has proved to be very difficult. Consequently,
the early version of EGP which is expected to become a DARPA standard this
summer is very restrictive.

We have participated in specifying EGP arid in studying the routing issues this
protocol is attempting to address. We have implemented EGP for our C gateway.

4.2. Interior Gateway Protocol

rhe MITnet consists of about 45 interconnected LANs (called subnets), and is
expected to grow to about 200 LANs by 1990. It is becoming increasingly
inconvenient to manually change the subnet routing tables in all the MIT gateways
every time a new subnet and gateway is added to the MITnet. Therefore, we have
specified a subnet routing protocol (our Interior Gateway Protocol) to be used to tell
gateways within the MI rnet: first. which gateway to use to get to which exterior nets

63

EDUCA IONAL COMPUTING

the study in that. when they achieve a level of mastery of the computer, students will
be able to take machines to their own homes. The project is scheduled to run until
the end of the 1984-85 School year.

The project is empnasizing use of the computer as a tool in all aspects of the
students' education. The children are learning to program in Logo and will also use
software packages written in Logo, A key research interest are the different learning
styles exhibited by the students arid the effects of using the computers on those
learning styles.

The day-to-day supervision of the project is being carried out by the project
director. David Scrimshaw, working under Dr. Papert. Four undergraduates have
been programming Logo software for use by the elementary school students.

There are two teachers at each school involved in the protect. The first is the
prime teacher, the teacher of the class we will be studying. The second is a backup
teacher, a teacner of a neighboring class who will have several computers in her
class and will attend all meetings and sessions that the prine teacher attends. The
purpose of the backup teacher is to stand in for the prime teacher if needed, to
provide support for the prime teacher and to be an additional consultant to the
research group on classroom teaching matters.

The teachers, other project memoers. and a group of university students,
educators and nonMI F researchers (totalling 25) have been meeting each week to
plan and conduct the research for the project. Most of the classroom observation
will be carried out by members of this group.

3.2. The Carroll School

Sylvia Weir has been working in the Carroll School with 11-13 year old learning
disabled children and Logo. The fundamental postulate of this work is that a certain
segment of the population consists of children with learning deficits that may be
characterized as linguistic/analytic, but who may be very talented in terms of spatial
reasoning and "perceptual matnematics." These children may well be classified as
hyperactive and show learning styles which are very tar from "planful" or "top
down." In viw of these characteristics, standaird school settings and curricula
discriminate strongly against these children.

This year a set of measures of spatial and perceptual abilities have been
devrloped. They show a clear bimodal distribution among children at the school,
indicating a very particular subpopulation of children (those in the high mode) with
strengths that are riot being capitalized on. Work has begun on developing Logo-
based materials and techniques that build on their strengths, rather than keeping

77

EDUCATIONAL COMPUTING

search the journal and return a box containing ports to entries which have specified
key words -- constructing another view at need, rather than incrementally as the BY-
TOPIC view is constructed. One could even write a procedure to completely
reorganize the journal.

2.3. Future Work

Our planned future work on Boxer includes:

* developing a message passing semantics for Boxer;

" defining the basic graphical objects and operations of the system; and

" making a microcomputer implementation.

3. THE EDUCATIONAL CONTEXT

During the last year, there were three principal sites for working with teachers and
students: The Ouincy and Ohrenberger Schools in Boston (High Density Project), the
Carroll School. nd MIT itself. in addition to this work, we hosted the first National
Logo Conference with over 450 participants from more than 20 countries (June 27.
30). The conference highlights the major impact our work has had on education at
the national and international scales.

3.1. The Quincy-Ohrenberger High Density Project

Computers are becoming a common sight in today's classroom. There are two
reasons for this. The first is that as they become more common in society, there is a
greater perceived and actual need to teach people how to use them. The second
and more powerful reason is that computers can be used to dramatically enhance
the learning of essentially all other subjects. There will come a day when every
school child has a computer. Before this happens it is important to look ahead to
explore the possibilities and anticipate the problems posed by such a high density of
computer power. The Quincy-Ohrenberger High Density Project will explore these
questions.

rhis project, under the direction of Seymour Papert, is studying the use of
computers and Logo by elementary school students in two Boston elementary
schools. A class of 22 third graders at the Ohrenberger School in West Roxbury will
use 11 computers, and a class of 20 fourth graders at the Quincy School in
Chinatown will use 20 computers. This will produce a higher density of computers
per child than any that has been tried in an elementary classroom before. The
computer to be used is the Coleco Adam. There will also be a home component of

76

EDUCATIONAL COMPUTING

JOURNAL: data--

BY-CHRONOLOGY: data

BY-TOPIC: //I da a- -

DY-TOPIC: : dat---

port -------------------------
TOPIC: data-

IPorts I

KEYWORDS: data --------------
Cross ReferencingI

DATE: data --
111-10-83I

Ports are also good tor cross
referencing. Here, for example,
is a port to a related box.

port
I//I/I

port
I//I/I

port
I//I/I

QUARTS: data

STEPPER: data
I//I I

Figure 6-3: The first box in the PORTS section of BY-TOPIC is a
port to the first entry shown in the previous figure. The other ports

in that section are to other entries in BY-CHRONOLOGY.

75

EDUCATIONAL COMPUTING

JOURNAL : da ta ---

BY-CHRONOLOGY: data --
ENTRY: data

TOPIC: data-
lPortsl

KEYWORDS: data-
lCross Referencing I

DATE: data ----11l-10-83 I

Ports are also good for cross
referencing. Here. for example
is a port to a related box.

portt//f,'

ENTRY: data ----------------------
TOPIC: data ----------

ISomething Elsel

KEYWORDS: data ----
IFoo. Bar I

DATE: data -----
111-11-83I

Text ... Text ... Text ...

ENTRY : data ----------------------------------
TOPIC: data ----

IStepper I

DATE: data-
111-12-83 I

We have the option of laying out
copies horizontally, little man style.
as opposed to copy-in-place. But does
this complicate understanding lookup??

BY-TOPIC: data
1///I

Figure 6-2: A Journal contains two views of its entries, BY-CHRONOLOGY
and BY-TOPIC.

74

EDUCATIONAL COMPUTING

organization of the system. The primary difference between a port and a window is
that the port itself is spatially located in the system hierarchy, not attached to the
screen. A port appearing in a data structure indicates that the contents of the port is
shared in basically the Lisp sense. A difference between Boxer sharing and Lisp
sharing is that any object really belongs to (is contained in) a unique other object
and can only be "used" in other places.

In the context of sharing, one can see a subtle but important shift in the meaning of
variables from Lisp and Smalltalk to Boxer. The meaning of setting a variable in
Boxer is to change the contents of a box, so that any port to that box sees the
change. In Lisp, one cannot share in this way. A second object can indeed point to
the value of a variable, but changing the setting of that variable creates a new
pointer from the name to the new value, leaving the object which shared the old
value still pointing to it. This all means an extra layer of indirection in implementing
Boxer variables. But that layer corresponds to a key idea -- it represents place: If a
variable is to have a place, that place must remain invariant in the process of setting
the variable, and that fact, in turn, must be represented in the implementation.

The following example shows the usefulness of ports in cross referencing and in
producing multiple views of a system. It also happens to be a fine example of Boxer
used as a personal information system.

Keeping a personal database in Boxer is a trivial matter. Here, we use ports to
make available an alternate organization of entries in a journal. The top box in
Figuic 6-2, BY-CHRONOLOGY, contains all entries in chronological order. The
bottom box. shown expanded in Figure 6-3 contains the same entries reorganized
(via ports) according to topic. The intent is to allow the journal keeper to access an
entry according to preference or how he remembers it: "I seem to remember writing
something about that a week or so ago;" versus "Let me see what I have on the topic
of ports." Because ports are views on objects which appear in another place, any
change made in a port is instantly reflected in the original entry. If both the port and
the target of the port are on the screen, typing into either results in the characters
appearing in both.

We imagine the protocol for using such a journal to be something like the
following. One can make an entry by copying the form of a previous entry, or using a
template as described for mail above. Actually putting the entry in place could be
handled with a FILE function, which would make sure to insert a port to the new
entry under the appropriate topic in the BY-TOPIC listing. Of course, one could also
have an UPDATE function which, when executed, placed a port to any new,
unported entries in the BY-TOPIC listing. These utilities, FILE and UPDATE, are
actually not very complex Boxer procedures, though one would not expect early
novices to write them. They could be augmented with procedures to, for example,

73

EDUCATIONAL COMPUTING

by-one and then at some later time indicate that the typed statements should be
incorporated into a program. Consequently, programming in Boxer is often not so
much "writing" programs as it is piecing them together concretely from objects
already in the system.

2.2. Focus of Our Work This Year

Last year we built a minimal but usable implementation of Boxer on a CADR Lisp
Machine. During this year we transported the system to a Symbolics Machine and
filled out the basic functionality of the system, including improving and extending the
editor. Among the basic issues settled during the year were the set of data
operations and how they relate to sharing structure. We illustrate this work here by
describing a new structure added to Boxer.

Ports: Boxer maintains a strong identification of "things" with "places," and
"organization" with "spatial relationship" (in particular, containment implies
inheritance). This provides a firm foundation for easy, incremental learnability of the
system through inspection and through a uniform method of interpreting, modifying
and expanding what one sees. Nonetheless, these identifications are very strong
constraints on system organization and possible interpretations of "running a
program." In particular, Boxes are strictly hierarchical, and each box exists in
precisely one place. This means it is impossible to share in pure Boxer as on, can in
Lisp. having an object be part of more than one other object (via multiple pointers to
the shared object). It also means one has only a single view of any object in the
system -. that provided by the spatial context where the object exists. In contrast,
one may sometimes want to see things on the screen that are related in some way
other than with respect to their system organization. While running a program in
some environment, one might wish to view the changing contents of some distant
data box. Or one might want to be looking at some part of the system while
constructing another part, say constructing a program in analogy with another from
a different context. Window systems were invented partially to serve this kind of
function.

Sharing and multiple views are not of first-rank importance to novices, but they are
important enough that we would like to incorporate them for morc advanced users.
To meet this need we have implemented a single structure that provides much of this
functionality, but which we consider minimally subversive of the box semantics. It is
called a port ("view port") and has most of the properties of a box. It appears as a
rectangular region that can be named and is constructed and erased in essentially
the same way that a box is. But its meaning is a passageway to another part of the
system. What one sees in a port is a part of the system located in another place.
Thus one can inspect and even change remote objects. In general, one can pretend
that another part of the system is in the place of viewing without changing the "real"

72

EDUCATIONAL COMPUTING

2.1. Design Principles of Boxer

One of our major concerns in formulating the design of Boxer is to provide a
mechanism that will enable even beginning users to deal with the large-scale
structure of the system. The approach we have adopted is to organize Boxer in
terms of a pervasive spatial metaphor. Elements of the environment can be thought
of as places, and their visible spatial relationships have structural meaning. All
compound objects are versions of "boxes" which are two dimensional arrays of
words or, recursively, boxes. The containment relation among boxes provides, via
the spatial metaphor, a model of all hierarchical structural relations in the system,
from variable scoping, through program/sub-program structure to index and file
arrangement. In fact, the entire system can be regarded as a single two-dimensional
geometric space through which the user moves. This is a crucial aspect of making
the system accessible to beginning users, since it links the central organizing image
of the system to geometric intuitions.

Figure 6-1 shows a simple example of spatial organization in a procedure called
SQUARE, which draws a square on a graphics display screen by repeating four
times a sequence of two moves called CORNER. Notice that the definition of the
CORNER procedure is geometrically contained within the SQUARE procedure. This
shows how boxes can be used to achieve the usual organization of block-structured
languages. In Boxer, we extend this principle, using boxes as geometric carriers of
many other hierarchical structures as well.

SQUARE: ---

CORNER: ------------------
forward 100

right 901
- ----------------------

RFPEAT 4 +------------+
Icorner I

+--

Figure 6-1: Spatial Organization

A second design principle in Boxer is the identification of objects with their screen
representations. This is, in essence, a consistent commitment to the idea that the
system is the way it appears on the screen. For example, any text that appears on
the screen. whether typed by the system, typed by the user, previously executed or
not, is available to be manipulated, edited or executed. This uniformity enables
Boxer to support styles of interactive use that are very different from those found in
other computational environments. For example, one can execute statoments one-

71

EDUCATIONAL COMPUTING

1. INTRODUCTION

Serious work in education today requires an extraordinary breadth of
competences and concerns which we can partition into: (1) techiology, (2) the
educational context (students, teachers and curriculum), and (3) ccgnition. In the
Educational Computing Group we accept the need to work simultaneously in all of
these areas -- understanding the basic principles of learning and knowing,
fashioning computational tools from those principles, and developing learning
materials and teaching techniques which are responsive at once to the best current
ideas about learning, the most promising uses of technology and the realities of the
classroom.

In the area of technology, our major work is the Boxer project which aims at
providing the most general, easy-to-use computational facilities possible for non-
expert computer users such as students, trainees, teachers and computer-materials
developers. The educational context is represented by our work in a number of
settings, including an experiment in very high density of computers in two
elementary classrooms in the Boston Public Schools: work in the Carroll School with
learning disabled youngsters, and work with MIT undergraduates under the auspices
of Project Athena. Our work on cognition has been spread across projects. It has
centered on understandability of complex computational systems in the Boxer
Project, on spatial reasoning at the Carroll School, and on studying children's
notions about physics in connection with the Cambridge Public Schools.

2. BOXER

During the past year, we have continued the design and implementation of Boxer,
whose goal is to integrate a wide variety of applications .- text manipulation,
programming, graphics, information retrieval and data manipulation -- within an
easy-to-learn framework. Boxer is motivated by our conviction that most non-
specialist users of computers are best served by providing a computational
environment that is integrated and coherent, in which all the basic capabilities can
be assimilated to a single, uniform computational scheme. In Boxer, we have been
trying to achieve system coherence through (1) a simple spatial model representing
all hierarchical organizations of data and programs, and (2) a universal insistence
that all objects are equivalent to their screen representation. The latter provides a
uniform way of manipulating all system objects, files, programs, databases, records,
textual objects. etc. using the same "extended text" editor.

70

EDUCATIONAL COMPUTING

Academic Staff

H. Abelson S. Papert
A. diSessa, Group Leader S. Weir

Research Staff

E. Lay D. Smith
D. Scrimshaw

Graduate Students

M. Eisenberg L. Morecroft
D. Bisaillon F. Turbak
M. Hassamali

Undergraduate Students

R. Harris C. Hibbert
T. Kellison L. Klotz
L. Kolodney J. Lee
D. Luneau J. Marshall
S. Martin A. Moel
R. Ouellette D. Spitz
R. Steinmetz E. Twietmeyer

Support Staff

P. Davis M. Palmgren
J. Karaslaanian

Visitors

T. Globerson W. McKay

DISI IHIOUTED COMPUTER SYSTEMS

3. Rornkey, J.L. "Reliable Datagram Multicast on the Internet," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge. MA. expected December 1984.

4. Sollins. K.R. "Distributed Name Management'" Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science,
Cambridge. MA, expected August 1984.

Talks

1. Clark, D.D. "Remote Virtual Disk Protocol," Internet Research Group,
January 1984.

2. Clark, D.D. "A Case Stu' y: Th'- Campus Network Plan for the
Massachusetts Institute of Technology," ACIS. IBM, Rockville, MD,
January 1984, March 1984.

3. Clark, D.D. "Overview of Research at Massachusetts Institute of
Technoogy, Laboratory tor Computer Science," Digital Equipment
Corporation. Hudson, MA, March 1984.

4. Clark. D.D. "The Reality of the Network Protocol Jungle," MIT Industrial
Liaison Program, Cambridge, MA, April 1984.

5. Greenwald, M.B. "Swift: An Operating System for a Personal

Computer," Ninth ACM Symposium on Operating System Principles,
Bretton Woods, NH. October 1983.

6. Greenwald, M.B. "Accessing Secondary Storage Across a Data
Network." Digital Equipment Corporation. Littleton, MA, June 1984.

7. Martin. E.A. "MIT Gateway Projects: Campus Network/Project Athena
and Dynamic Routing." Gateway Special Interest Group Meeting, USC
Information Sciences Institute, Marina Del Rey, CA, February 1984.

8. Sollins. KR. "Distributed Name Management. Ninth ACM Symposium on

Operating System Principles. Bretton Woods, NH, October 1983.

Conference Participation

1. Clark. D.D. Panel Session. ACM Sigconmm '84. Communications
Architectures and Protocols. Montreal, Quebec. Canada, June 1984.

68

DISTRIBUTED COMPUTER SYSTEMS

Publications

1. Saltzer. J.H.. Reed, D.P. and Clark, D.D. "End-Tn-Fnd Arguments in
System Design," to appear in ACM Transactions on Computer Systems,
(November 1984).

2. Greenwald, M.B. "Remote Virtual Disk Protocol Specification," MIT
Laboratory for Computer Science Technical Memorandum, Cambridge,
MA, to appear 1984.

Theses Completed

1. Gobioff, B. "An Investigation of Development Methodologies for
Communications Software," M.S. thesis, MIT Sloan School of
Management, Cambridge, MA, May 1984.

2. Kim, T.H. "A Distributed Mail System Repository," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

3. Krajewski, R.P. "Required Capabilities for a File Access Protocol," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

4. Shinsato, H.J. "A CLU Interface for a Bit-Mapped Display," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

5. Skinner. G.D. "An Implementation of an ARPANET FTP Server for
UNIX," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1984.

6. Spurlock, J. "A Comparative Study of Distributed File Systems," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

Theses in Progress

1. Siegel, E.H. "Dynamic Linking in a Type Safe Environment," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1984.

2. Gramlich, W.C. "Checkpoint Debugging," Ph.D. dissertation, MIT

Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1984.

67

DISTRIBUTED COMPUTER SYSTEMS

retained. Checkpoint debugging can also be effectively used to help debug real-time
systems. Checkpoint debugging is also useful for debugging high availability
programs (such as printer servers) where the system maintainer can not be available
for debugging 24-hours a day.

66

DISTRIBUTED COMPUTER SYSTEMS

exist yet: it need not exist until execution is required. A second aspect of availability
relates to locking or checking out program modules for modification or
improvement. These and other aspects of availability are still under study.

A second issue arising from the programming support environment is that the set
of participants is distinct from the set of objects named, unlike the mail example. In
fact, humans often use the sot of participants as part of their means of identifying a
particular aggregate. The third and fourth issues are not directly naming issues,
although they are closely related. The third is the issue of how and when
participants are notified of modifications to the shared context in cases where
someone else made the modifications. The fourth is the implementation issue of
how the updates are done and to what degree distributed copies of the shared
context are synchronized. In the mail system, both of these were achieved through
the mail system itself. A message carried both name and address of the sender and
all recipients. If a name was not known in the local copy of the shared context, it was
added and until it had been used several times the recipient saw both the name and
the address. At such time that the name was accepted, the address was stripped off
before displaying the message to the recipient. In the programming support
environment such facilities for conveying and displaying information are not
available. As the work progresses these issues will be addressed in further detail.

The current state of the dissertation is that the implementation is complete, work is
progressing on a detailed design for a programming support naming facility, and
writing of the dissertation is under way.

6. CHECKPOINT DEBUGGING

Wayne Gramlich continued work on his thesis in the area of debugging distributed
systems. The specific debugging technique that is being investigated is called
checkpoint debugging.

The basic idea is to regularly take an atomic snap-shot of the process state and
then record all subsequent process input until the next atomic snap-shot. When a
bug is encountered, the previous snap-shot and all of its process input is retained for
subsequent analysis. Debugging is performed by reloading the snap-shot and
replaying the process input.

Since computers are deterministic finite state machines, the sequence of events
leading up to the occurrence of the bug can be recreated as many times as
necessary. A conventional interactive debugger can be used to help find the bug
when the checkpoint is being replayed. For a distibuted computation, all the
processes in the computation must be regularly checkpointed. When a bug is
encountered in any of the processes. the checkpoints for all processes must be

65

DISTRIBUTED COMPUTER SYSTEMS

outside the MIT network, and second. which neighbor gateway to use to get to the
various MIT subnets.

This IGP should serve the MITnet's needs for the next five years or so. at which
point the amount of routing information that must be processe -' may become too
cumbersome.

4.3. Internet Congestion Control

Lixia Zhang began a study of network resource allocation techniques suitable for
the DARPA Internet. The Internet currently has a simple technique for resource
allocation, called "Source Quench."

Simple simulations have shown that this technique is not effective, and this work
has produced an alternative which seems considerably more workable. Simulation
of this new technique is now being performed.

5. DISTRIBUTED NAME MANAGEMENT

Karen Sollins continued work on her dissertation as described in the previous
progress report. The previous report addressed a collection of issues in naming in a
distributed environment. The work this year included further work on a paradigm for
naming (as described in that earlier progress report). To this end, Sollins has
implemented the ideas in an electronic mail system. The exercise of implementing
has had both positive and negative effects. First, due to limitations of the
programming environment and the resources available, the model was simplified.
Contexts and aggregates are available to the users, but not in their full generality.
For example, names can only be translated to and from other strings, which are
assumed to be network addresses. On the other hand, the implementation did
highlight a problem that had not been previously considered in detail: the issue of
proposing new names and the stages through which a name progresses until it is
accepted by the community of participants in an aggregate. Further work on this
issue continues.

Electronic mail provided a restricted set of naming problems. In order to
investigate naming further, work is now progressing on examining the naming issues
in a programming support environment. A number of issues arise here that did not
arise in the mail example. First, there is the issue of availability. There are several
aspects of availability. One is whether or not an object that is being naned is
currently accessible or not and whether this is important for the activity at hand. For
example, if the activity is compilation and the interface to the named procedure is
known, perhaps the executable version of the procedure residing on another
computer need not be accessible. Perhaps the executable version does not even

64

EDUCATIONAL COMPUTING

them back because of their weaknesses. Preliminary results indicate positive
results. It is expected that these materials will be of benefit even to students who are
not classified as learning disabled, but who have preferred learning styles and
special reasoning abilities that are not tapped by standard curriculum.

3.3. Project Athena

Two Athena Projects have been begun by members of the Educational Computing
Group. Hal Abelson has initiated the development of a course on linear algebra.
Andy diSessa has stared developing a course in computer-aided research and
design. The latter uses material in the standard freshman physics curriculum, but is
intended to bring students as quickly as possible to the position where they can
engage in original research and design problems which take a significant fraction of
a term to complete. The course is being developed in modules consisting of text
computer simulations and microworlds that not only serve as a basis for student
homework problems, but as a starting point for student research projects as well.

4. COGNITIVE STUDIES

In addition to Weir's work on spatial reasoning described briefly above, another
piece of research is in progress by diSessa and a postdoctoral assistant, Tamar
Globerson, visiting from Israel. Th;s project is aimed at determining how systematic
and theory-like the common-sense physical knowledge of children is. Students from
pre-school, third and sixth grades have been presented with a number of situations,
including computer simulations, that all present basically the same situation: An
object is moving in a circular path (e.g., a ball on a string) and suddenly the circular
constraint is broken (e.g., the string is cut). What trajectory does the ball follow?

In contrast to other studies, this work is showing a very complex context
dependence in the answers the children give, indicating the non-theory-like nature
of their knowledge. Children will change their minds on the basis of subtle changes
in the problem, car be convinced to accept possibilities they do not suggest
themselves, and even change their minds on viewing a simulation of the predictions
they themselves make, as if thinking in the abstract about motion, and judging
plausibility by watching invo-.,e two different knowledge pools.

Follow-up work will chart in detail the development of particular intuitive "laws" of
physics, examine the systematicity of the apparently patchwork collection of ideas
children have, and eve;,tually develop computer activities to engage and develop
children's physical intuitions.

78

EDUCATIONAL COMPUTING

Publications

1. Abelson. H. TI Logo. Byte Books, Peterborough, NH, 1984.

2. Abelson, H. Structure and Interpretation of Computer Programs, (with
G.J. Sussman and J. Sussman), MIT Press and McGraw-Hill, Cambridge,
MA, 1984.

3. diSessa, A. "The Computer as an Epistemological Catalyst," in Children
and Computers, L. Klein (ed.), Jossey-Bass, Inc. (in press).

4. diSessa, A. "A Principled Design for an Integrated Computational

Environment," Human-Computer Interaction (in press).

Theses Completed

1. Harris, R. D. "FloWorld: A Graphical Modeling System for Momentum
Flow," S.B. thesis, MIT Department of Electrical Engineering,
Cambridge, MA, June, 1984.

2. Hibbert, C. T. "Integrated Computing Environments: The Control of
Complexity in Powerful Systems," S.B. thesis, MIT Department of
Electrical Engineering, Cambridge, MA, June 1984.

3. Kellison, T. "Two Kinds of Measurement: The Way Kids Think about
Angles and Lines," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, 1984.

4. Strassmann, S. H. "Learning Lisp: The Barriers to Novice Programmers
at MIT," S.B. thesis, MIT Department of Electrical Engineering,
Cambridge, MA, June 1984.

Talks

1. Abelson, H. "A Lisp-Programmer's View of Software Engineering,"
General Telephone and Electronics Conference on High-Level
Languages, Norwalk, CN, September 1983.

2. Abelson, H. "Turtle Geometry," Annual Conference of Computer
Education Group of Victoria, Melbourne, Australia, May 1984.

3. Abelson, H. "Advanced Programming," National Logo Conference, MIT,
Cambridge, MA, June 1984.

79

EDUCATIONAL COMPUTING

4. diSessa. A. "Introducing Computers in Schools - Logo across K-12," all
principles and faculty development staff of R-1 school district, Jefferson
County, CO, August 2,1983.

5. diSessa, A. "Intuitive Physics," Colloquium in Developmental
Psychology, Columbia University, New York, NY, September 25, 1983.

6. diSessa, A. "Learning Physics from Dynamic Turtles," and "Boxer:
Goals and Means for Producing an Integrated Computational
Environment," IEEE Educational Computer Conference, San Jose, CA,
October 1983.

7. diSessa, A. "Computers and Learning: New Means to New Ends,"
keynote address at the President's Forum on Educational Issues:
Computers and Education, Rutgers University. New Brunswick, NJ,
November 4, 1983.

8. diSessa, A. "Perspectives on the Future of Educational Software,"
WNET Professional Forum on Educational Applications of Interactive
Technologies, New York, NY, January 12, 1984.

9. diSessa, A. "Future Computer Languages for Education," Swedish
National Board of Colleges and Universities, Symposium on Computers
in Research and Education, Cambridge, MA, January 25, 1984.

10. diSessa. A. "Learning Physics with Logo," Boston Computer Society,
Cambridge, MA, March 1984.

11. diSessa, A. "Boxer: Designing an Integrated Computational
Environment," Annual Meeting of the American Educational Research
Association, New Orleans, LA, April 27, 1984.

12. diSessa, A. "The Future of Programming," National Logo Conference,

MIT, Cambridge, MA, June 30,1984.

13. Papert, S. Approximately 30 talks from July 1983 to July 1984.

14. Weir, S. "The Logo Learning Environment: A Catalyst for the Education
of Severely Handicapped Children," Annual Statewide Conference on
Microcomputers for Special Edtlcation, Worcester Marriott Hotel,
Worcester, MA, September 19, 1983.

15. Weir, S. "Incorporating Microcomputers for Special Needs Children into

80

EDUCAT IONAL COMPUTING

an Urban School System." The Lowell Model for Educational Excellence
Study Commission, Lowell, MA, October 12, 1983.

16. Weir, S. "Computers and Special Needs Children," St Paul Day Teacher
Workshop. Evening: Lecture to St. Paul Medical Group; St. Paul, MN,
April 1984.

17. Weir, S. "What do Children Learn," National Logo Conference, MIT,
Cambridge, MA, June 28,1984.

18. Weir, S. and Ary. T. "Bridge-building between Logo and Classroom
Math" poster session Logo 84, MIT, Cambridge, MA, June 29,1984.

19. Weir, S. segment in "The Talking Turtle," P.B.S. NOVA, October 25,
1983.

81

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Academic Staff

Arvind, Group Leader

Research Staff

R. lannucci J. Pinkerton

Graduate Students

M. Beckerle V. Kathail
S. Brobst P. Lim
C. Chiang G. Papadopoulos
D. Culler K. Pingali
P. Fuqua M. St. Pierre
S. Heller R. Soley
R. lannucci B. Vata

Undergraduate Students

R. Adamjee J. Ngai
S. Viqar All C. Ozveren
M. Bucci J. Picciotto
J. Buonora K. Rahmat
J. Cernada R. Sathyanandan
T. Chambers K. Traub
E. Desai W. Tsang
S. Douglass 0.-S. Wei
S. Gahni A. Wang
W. Hamdy M. Wong
T.lIm C. Wu
C.Li J.Ying
D. Morais S. Younis
G. Ng

FUNCTIONAL L ANG IAC, ' Atil) AHO I II 1-~ I UflLS

Support Staff

P. Sedel

Visitors

E. H:agersten I. Jacobson

84

FUNCTIONAL LANGUAGES AND ARCHITECTURES

1. INTRODUCTION

The primary direction of the Functional Languages and Architectures Group
continues to be the study of new computer structures to exploit parallelism in
application programs. Our approach in studying parallelism is based on functional
languages and dynamic dataflow machines. We believe the success of a general-
purpose multiprocessor computer depends on its effective programmability and
efficient utilization of resources. Thus, in addition to the hardware architecture, we
are concerned with high level language support, communication° requirements, and
efficient distribution of workload over the machine. We feel the development of
novel parallel architectures will require several iterations. Hence, the group is
pursuing a variety of interrelated projects, all aimed at developing our understanding
of the problems and moving us closer to a final implementation. We have organized
this report in two major sections: The first describes the Tagged .oken Dataf low
Project and the other describes the Multiprocessor Emulation Facility (MEF) for
experimenting with parallel machines. The Tagged Token Dataflow architecture is
going to be the first large scale emulation experiment on the MEF.

The Tagged Token Dataflow Project is a major effort to realize the model of
dataflow computation embodied in the U-interpreter [3] The architecture continues
to evolve as our understanding of the issues related to realizing this model deepens.
The development of a detailed simulation of the architecture on the IBM 4341 in
cooperation with IBM Yorktown Heights over the past year has provided invaluable
experience. In order to build the simulation it was necessary to give detailed
specifications of every major component of the architecture. This process
uncovered a number of oversights in the early design. Moreover, in order to run
programs on the simulated machine, it was necessary to develop a run-time
resource management system to control the allocation of resources and distribute
work over the collection of processors. This has considerably sharpened our
attention on resource management issues in the past one year.

The simulator is too slow to be used as a vehicle for experimenting with large
dataflow applications. Thus, a large scale multiprocessor emulation of the Tagged
Token Dataflow Machine is being developed to meet this need. We expect the
emulation to bring about a depth of understanding of dataflow applications far
beyond the current state of the art. Currently, the emulated dataflow machine runs
on five high-performance Lisp Machines which are connected by an Ethernet.
programming for both the simulated and the emulated machines is done in the high-
level dataflow language Id. We have an operational Id-to-graph compiler which is
used to drive both prototype dataflow machines. The Id definition has been revised
to permit a more elegant use of higher-order functions. We plan to implement a new
version of Id in the next two years.

85

FUNCTIONAL LANGUAGES AND ARCHITECTURES

The goal of the Multiprocessor Emulation Facility is to develop it as a useful tool for
research on new parallel architectures and associated languages. The facility will
consist of 64 Lisp Machines and a high bandwidth interconnection network. Generic
software for inter-processor communication and for emulating other architectures is
also to be provided. In the past year, significant progress toward these goals was
made. Two parallel efforts to design the communication network have been put in
place. One design uses circuit switching and communication on four bit parallel
data links while the other uses packet switching and bit-serial communication. The
former is conservative in the use of technology and thus represents lower risk than
the latter. A detailed design for the circuit switch card, excluding the Lisp Machine
interface, has been completed.

We have been able to attract significant industrial support in the form of three
circuit designers from IBM Endicott and one from Ericsson, to do the hardware
development for the emulation facility. However, the infrastructure in the Laboratory
for Computer Science for hardware development is not adequate to support the
MEF. Thus, a detailed plan for a hardware laboratory was prepared and partially
executed. Further construction in the hardware laboratory is contingent upon
receiving more research funds which are believed to be available during the coming
year.

2. TAGGED TOKEN DATAFLOW PROJECT

2.1. Architec:tural Background

The Tagged Token Dataflow Architecture is composed of a number of Processing
Elements (PEs), connected by a packet switched communications network. Each PE
is a complete dataflow computer. The basic organization is shown in Figure 7-1.
The PE consists of a number of asynchronous pipeline stages, connected by FIFO
buffers. The various stages form three subsystems. The subsystem shown toward
the right in Figure 7-1, performs the basic instruction processing. The stages of this
pipeline reflect the essential steps in the processing of a dataflow instruction: detect
when data has arrived to enable an instruction, fetch the instruction, compute the
result, generate result tags, and finally dispense the result tokens. The subsystem to
the left provides storage for data structures. This structure store incorporates a
number of innovative ideas to allow for sharing of information without constraining
parallelism. The benefits of this approach are presented in [4] A detailed design of
the controller for the structure store is presented in [9]. The center subsystem
includes a PE controller, which provides a variety of support operations, including
input/output, block transfers, and access to the resource management system.

Tokens and Tags: In the Tagged Token Dataflow Architecture, values are carried

86

FUNCTIONAL LANGUAGES AND ARCHITECTURES

E _F/

E

PE PE

FE

I InputI

I ~Instruction Fo

I lStr FE
Ie~

Storg Controller

I IF

L_ I

Figure 7-1: A Block Diagram of the Abstract Machine

FUNCTIONAL LANGUAGES AND ARCHITECTURES

on tokens, which are passed from one instruction to the next. The arrival of data
causes the corresponding instruction to be fetched, unlike a conventional computer
in which the exccution of an instruction causes data to be fetched. There is no
program counter in this machine. Each token carries a tag, in addition to a data
value, which specifies the instruction to be executed. The tag contains essentially
three items of information: the address of the PE which is responsible for executing
the instruction, the address of the instruction to execute within that PE, and the
context in which the instruction is to be executed. The PE address is required
because a code-block may be spread over many PEs, and tokens must be freely
transferred between PEs. The contextual information is required because many
logically distinct activations of a given code-block may be in execution
simultaneously. There must be a way to distinguish the various activations so that
tokens belonging to different activations do not interact. All tokens belonging to a
given activation carry the same context identifier or color. Thus, two tokens are
destined for the same instance of an instruction if and only if their tags match.

Instruction Processing: Upon arriving at a processing element, a token enters
the waiting-matching section. The tag it carries is compared against the tags of all
the tokens resident in the waiting-matching store. Instructions are limited to two
operands, so if a match is found, the corresponding instruction is enabled for
execution. The two matching tokens are purged from the waiting-matching store
and fcfwarded to the instruction fetch section. The instruction specified in the tag is
fetched from program memory, along with any required constants. The data values
are aligned, and an operation packet is sent to the ALU for processing. In parallel
with the ALU, the compute-tag section forms tags for result tokens, based on the
destination list of the instruction and contextual information on the input tag. The
result values and tags are merged to form tokens and passed on to the
communication network, whereupon each is delivered to the PE specified in its tag.

Tolerance to Communication Latency: In many respects. a multiprocessor
setting presents a fundamental architectural challenge. Communication latency
between processors is generally large and unpredictable. Thus, for a multiprocessor
architecture to be successful, the individual processing elements must be extremely
tolerant to communication latency [4]. The PEs which comprise the Tagged Token
Dataflow Architecture meet this challenge. Note that once an instruction is enabled,
it may be processed to completion without further communication with other PEs.
The pipeline is never held up by communication latency. Waiting only takes place in
the waiting-matching section. Completion detection for external communication is
provided naturally by the basic instruction scheduling mechanism; when data arrives
an instruction is scheduled. This dynamic scheduling, coupled with the ability to
interlace many independent threads of computation, allows for overlapped requests
to the communication system, tolerates long latencies, and tolerates unordered
responses.

88

FUNCTIONAL LANGUAGES AND ARCHITECTURES

2.2. Resource Management

The description of the architecture presented above assumes that the program
graph is in place, distributed appropriately over the machine. This section looks at
the process of executing programs on the Tagged Token Dataflow Architecture at a
somewhat higher level. It focuses on how resources are managed and how work is
distributed over the machine.

Static vs. Dynamic Resource Allocation: There are basically two approaches
to resource allocation, each offering advantages and disadvantages. On one
extreme is the static approach where the compiler assigns processors and storage
to a program. This is a common strategy for scientific programs written in Fortran. If
the decomposition is just right, the performance can be extremely good, with little
overhead for the distribution of work at run-time. However, developing a good static
decomposition appears to be a very difficult problem. In any case, functional
languages require dynamic resource allocation and thus preclude a purely static
approach. A purely dynamic approach, on the other hand, implies allocating each
computational activity on the least busy processor. Dynamic allocation on the
Tagged Token machine is undertaken only at the level of procedure calls, (i.e., code-
block invocation), each of which is assigned to a group of PEs at run-time. David
Culler has developed a dynamic resource management system for the simulation
along these lines. This resource management system has also been adopted for the
emulated dataflow machine. We are currently experimenting with various allocation
algorithms and load balancing techniques. The present architecture provides an
efficient and flexible way to map loops and recursive procedures on a group of
processors. As static analysis techniques develop, we will consider more aggressive
optimizations for mapping special program structures.

Hierarchy of Resources: A variety of resources are required to support a code-
block activation. These include PEs, program memory, code-block registers, colors,
etc. Coordinating resource allocations between a variety of PEs can be extremely
cumbersome, if PEs are allowed to cooperate in arbitrary ways. In order to keep the
complexity of resource management tractable, a hierarchy is imposed on the set of
system resources. In effect, the resource manager deals with blocks of resources
and allows the hardware to distribute them at a finer grain automatically. This also
allows the number of requests to the manager to be reduced.

The notions of physica; domain and physical subdomain are introduced to

facilitate selecting a set of PE., for an invocation. The collection of PEs in the system
is divided into disloit phy;i(al ,tCIt, (PD). each being a set of consecutively
addressed PEs. This par:iliun is not mjlowed to change while programs are running.
Each PD may bo further n . i, lued , - -'- of diF -tt vhsical subdo.'rains (PSD),
again each is a set of contiguousl addre,.s P~s The si- of the PSD is dynamic and
will vary for different code tiourks in a I iw PD A code block activation is assigned
to a rdomain. and a complete c(opy of th,' ,,ode is placed in each subdomain.

89

FUNCTIONAL LANGUAGES AND ARCHITECTURES

To simplify memory management, we require that memory allocation be identical in
every PE in a given domain. The code-block is split into as many sub-blocks as there
are PEs in a subdomain. Each PE receives one sub-block, all starting at the same
base address. This allocation is replicated for each subdomain in the domain. For
computational efficiency we require that all PD and PSD be a power of two in size.

Each copy of the code-block may be used by many concurrent activations and
each of these may require mapping information to be stored locally to the PEs, so
that result tags can be generated. Again, by grouping activations together this
mapping information can be kept within reason. Each PE contains a set of 256
code-block registers (CBR). Each code-block register contains a code-base address
and information pertaining to the mapping of the code-block onto the domain. Each
code-block register can support 16 colors; additional information can be associated
with each color. Code-block registers, like program memory, are allocated uniformly
throughout each domain. With this partitioning, the manager views the system
resources in terms of domains, code-block registers, and colors.

To understand the role of the manager, consider the process of code-block
activation. A request is sent to the resource manager. It first selects a domain with
sufficient resources to support the activation. If the code-block is not present in this
domain, it will have to be loaded. In this case, the subdomain size may be set as
suggested by the compiler, or as determined by the resource manager. A code-
block register must be allocated, and a set of colors, relative to this CBR, is assigned
to this activation. Finally, program memory is allocated throughout the domain and
the code is loaded. Mapping information is established in each PE to describe the
disposition of the code-block, as part of the CBR, Further information pertaining to
each color can also be provided. The code-block is now ready to execute. The
manager allocates egument and result structures and sends descriptors to both the
caller and the newly activated code-block. The code-block may now execute on its
own except for invocation and resource allocation requests. Subsequent
invocations of the same code-block may share the CBR, if colors are available. If
not, a new CBR must be allocated, but it may share the copy of the code. In either
case the mapping parameters will have to be the same as the original, since the code
has the same disposition. New color information may be provided.

These resource management concerns essentially dictate the structure of the tag
carried on tokens. It consists of five fixed size fields <PE #, CBR, Color, Initiation #,
Relative Instruction Address>. The code-block register gives the base address of the
code and the base address of the color information. This allows instructions and
constants to be fetched from program memory. The CBR also describes the
disposition of the code.block across the domain, so the hardware can generate tags
for result tokens.

0

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Efficient Internal Invocation: The resource manager provides a mechanism for
initiating activity in a possibly distant region of the machine. However, in many cases
this generality is not required and is overly expensive. In order to allow highly
repetitive program structures to execute without involving the resource manager,
256 initiation numbers are associated with each color. Loops and recursive
procedures make use of the initiation numbers to distinguish tokens belonging to
different iterations, or different recursive invocations. A code-block activation is
allotted a color and has the range of initiation numbers at its disposal. Loops utilize
the D operator. which increments the initiation number. Recursive procedures make
use of the R operator, whicl computes a new initiation number of the form A * I + B.
Many loops may exceed 256 iterations, hence facilities are provided for allocating
blocks of colors and for using the next color in the case of initiation number
overflow. The compiler generates code to test whether all colors and initiation
numbers have been exhausted and to issue a manager request for more colors if
necessary.

The hardware provides a mechanism to distribute internal activations over
processors efficiently. This is the rationale for partitioning domains into
subdomains. Recall, each subdomain contains a complete copy of the code. The
hardware distributes activations within a domain based on the initiation number. An
additional parameter is provided to support block distribution (i.e., k iterations on
this PSD, k on the next, and so on). This follows along the lines discussed in Arvind,
et al. [2).

The results of static analysis are expected to guide the resource manager in
making allocations. In particular, it enters into the process of choosing among
domains, choosing subdomain size, choosing k (the number of iterations to keep
together), and for deciding where to allocate data structures. Conveying this
information is somewhat subtle, however. Completely static information, such as
nesting relationships, can be included in the compiler output along with the code.
Execution dependent information is supplied by augmenting the graph slightly and
sending information along with the request. Currently, only simple information is
conveyed in this way, such as the expected number of iterations. But we are
investigating more powerful aids of this form.

Compiler Responsibilities: Introducing a resource management system into a
dataflow model raised a number of interesting compilation issues. The U-interpreter
is entirely independent of resources; it assumes unbounded compuritional
resources. In order to execute dataf low programs on a practical machine, resources
must be explicitly requested. They must also be released in some manner. The
basic dataflow graphs must be augmented so that the resource manager request is
generated when resources are required. Also, the compiler must generate code to
make proper use of blocks of resources. For example, to use initiation numbers

91

F$INCTIONA1. I ANG[AGIS AND ARCHITECTURES

properly, it is necessary to handle overflows. The compiler must generate code to
determine when resources can be released. Thi involves detecting completion of
code-block activations and proper handling of reference counts for structures.

Detecting completion is non-trivial in a dataflow system because a code-block may
continue to execute after all interesting results have been produced. Many iterations
of a loop may be active simultaneously. so the compiler must detect that all have
completed. For acyclic graphs there is little trouble. A signal token is generated for
any operators which have no destinations. These and all the output arcs of the
graph form the inputs to a binary reduction tree. The token that falls out the bottom
of the tree is the last token of the activation. This technique can be extended to
loops, but care must be taken to avoid serializing loops that would otherwise provide
parallelism. The special signal token of one iteration is part of the completion tree
for the next. In effect completion detection is serial, even though the loop may be
parallel. The detection simply lags behind the loop execution.

One important implication of this incremental completion detection is that it makes
it possible to run loops of an arbitrary number of iterations using only a few colors.
The loop is given multiple colors. As it exhausts one color it goes on to the next or
requests more. The completion follows behind detecting and releasing colors that
are no longer needed and, hence may be recycled.

The compiler must also assist in the detection of parallelism in the construction of
data structures. When certain restrictions apply, arrays can be modeled as I-
structures which allows for a more parallel implementation than for ordinary
structures. Detecting those arrays which can be implemented as I-structures is
difficult in general: it involves analysis similar to that done by vectorizing compilers
during code vectorization. There are, however, several important special cases
where I-structures can be detected easily. We have also found several situations in
which the techniques of vectorizing compilers can be borrowed and applied. The
compiler generates instructions for the run time system to allocate I-structure
storage. For storage reclamation, reference countirg can be implementcd because
I-structures are acyclic. The overhead of maintaining reference counts can be
substantially reduced if, with -compiler assi.tince, they are incremented and
decremented at procedure call and exit only.

2.3. Simulation Experiments

The primary purpose of the simulation fr .iity is to provide a prototype and test bed
for the Tagged Token Dataflow Architecture i(- basic requirement in designing the
simulator was that all aspects of the architecturc be modeled in) manner that could
be cast directly into hardware. Deficiencies in the aichitecture were to be exposed
and remedied, rather than disg-uis-d by software tricks Woiking through the

92

AD-A158 299 LABORATORY FOR COMPUTER SCIENCE PROGRESS REPORT 21 JULY 21
83-JUNE 841U) MASSACHUSETTS INST OF TECH CAIIOt E LAD

FOR COMPUTER SCIENCE EOUOS UN 84DENT

INONEIII
ISIIlIIIII

MENEMhNONEhoilIIIIIIIIIIIIIl
IIIIIIIIIIIIIl
lllllllllllhl
llllllllllllllj

1B0 ~28 G25
I M315

4-0 G 2 *

1-jll25 N1-4

FUNCTIONAL LANGUAGES AND ARCHITECTURES

implementation of the machine in tnis manner did indeed uncover shortcomings and
caused the specification of the architecture to become mucn more precise. The
architecture is basically an asyncnronous pipeline, with stages connected via finite
sized buffers. This mooularity is retlected in tne design of the simulator; the
functional behavior of each stage is modeled oy a Pascai procedure which receives
an input packet and the state of a station and proouces a list of result packets with a
new state. Thus, the specifications of the major hardware components are easily
discernible from the simulator software. Also, the modeling of buffer interactions is
divorced from the modeling of the functional behavior of the components. This
design has greatly simplified the check-out task and allows the architectural
specifications to be easily modified.

The first requirement of this 'soft' prototype is that it support all operations defined
in the instruction set [1] and provice enougn resource management support to run
substantial Id programs. This requirement has been met. Most of the code has been
written by Culler. Brobst. Vafa and Wei. In the corning months, the simulator will
provide a vehicle for analyzing the architecture. The initial set of experiments are
directed at identitying potential architectural failures: buffer deadlock, insufficient
waiting-matching facilitie s, and inordinate overhead. A larger body of experiments
will focus on determining the proper balance of various components (e.g., buffer
sizes arid processing speeds) and how various factors affect the performance of the
machine.

The simulation facility has provided valuable experience in programming,
debugging, and diagnosn in a multiprocessor setting. The simulator pursues many
computations in parallel. Thus, debugging a program being run on the simulator
involves all the subtleties of debugging on a true multiprocessor: what does a
breakpoint mean? what would be a meaningful trace? etc. We have developed a
debugging tool which will allow the user to examine the invocation tree (i.e., the
parallel counterpart to a conventional procedure trace) and to observe the execution
of a specific code-block at the instruction level. Debugging the simulator itself has
proved much like diagnosing hardware: bugs have to be isolated by running
diagnostic programs on the simulator and inferring from their misbehavior. We are
developing a significant diagnostic package which will carry over to hardware
implementations of the Tagged Token Dataflow Architecture.

2.4. Emulation Experiments

As a further proving ground for the Tagged Token Dataflow Architecture on large
applications, we are developing a high speed emulation of the architecture on the
MEF. The first version of the software for this emulator has been completed,
allowing us to run graphs generated by the Id compiler. The emulated dataflow
machine can be configured to run several dataflow PEs on each Lisp Machine which

93

FUNCTIONAL LANGUAGES AND ARCHITECTURES

communicates with other Lisp Machines over a ten megabit Ethernet. Higher-speed
networks are currently under development and the software is structured so as to
allow machines to easily integrate with such networks when they become available.

Currently, enhancements to support debugging in an asynchronous environment
and a user interface consistent with the simulator are being developed. The
performance of the Lisp version of the emulator is roughly 200 dataflow instructions
per second on a single Lisp Machine. If scaled up to 64 processors, this would be
approximately 13,000 dataflow instructions per second. However, we have not yet
begun optimizing performance by finding bottlenecks in the Lisp code or moving
critical pieces of the Lisp code into micro-code, so we are confident that we can
obtain our ultimate performance goal of 64,000 to 640,000 dataflow instructions per
second after some fine tuning. These issues are discussed further in Section 3.

2.5. Compiler Development

Two compilers for the dataflow language Id have been developed. One of them
translates Id into Maclisp, and provides a complete run-time system to execute the
object code; the other one translates Id into dataflow graphs where each node in the
graph is a Tagged Token Dataflow Machine instruction. The Id-to-graph compiler is
also responsible for generating instructions that ask for allocations and deallocation
of resources. Both compilers are written in Maclisp, and run on DEC-20 as well as
on Lisp Machines. The first compiler was written by Kathail and Pingali, while the
second one was written by Kathail alone. Work, in cooperation with IBM Yorktown
Heights, is underway to run these compilers on IBM machines using YKTLISP.

Further work on compilers can be classified into the following three categories:

1) Develop and implement algorithms for the Id-to-graph compiler for doing
static analysis of the programs to acquire information that may be useful
to the system manager. This includes finding producer-consumer
relationship among code-blocks and finding sizes of various data
structures to name a few.

2) Develop and implement optimization techniques to improve the
efficiency of the code generated by the Id-to-graph compiler. This
includes optimizations like constant subexpression elimination, code-
block merging to eliminate the setup time associated with a procedure
call, as well as reduce the number of calls to the manager and constant
propagation.

3) Incorporate streams, managers, and a declarative or deductive typing
system in both compilers.

94

FUNCTIONAL LANGUAGES AND ARCHITECTURES

2.6. Higher-order Functions and Reduction

It has often been remarked that much of the power and elegance of functional
languages stems from higher-order functions i.e., functions that can take functions
as arguments or return functions as the result of application. The use of higher-order
functions has been stressed by researchers interested in reduction and reduction
languages; in particular, by Turner [17], Backus [6] and Burge [8] As part of our
design effort, Arvind, Kathail and Pingali [5] re-examined the primitives provided in Id
for programming with higher-order functions and found them deficient in several
respects. In particular, we were dissatisfied with the compose operator of Id since
we found that it was clumsy to use and led to contorted programs. Our research into
languages based on the reduction (in particular, SASL [16] model of implementation
has led us to revise Id in order to permit efficient implementation and ease of use of
higher-order functions. In addition, this research has lead one of our group
members, Kenneth Traub, to design a novel architecture for performing parallel
reduction [15] The proposed architecture has several advantages over current
proposals in the literature for performing parallel reduction.

Given an expression in a functional language, reduction interpreters attempt to
simplify the expression by applying a "rewrite rule" to generate another expression
which can be simplified in turn. By doing this repeatedly, the interpreter generates a
sequence of expressions; if, at some point, an expression is generated which cannot
be simplified further, the interpreter returns that expression as the answer.
Expressions that cannot be simplified further are called normal forms and the
number of reduction steps taken by an interpreter to produce the normal form of an
expression is usually taken be be a measure of the work performed by the interpreter
in reducing the expression. Examples of reduction-based interpreters are the
normal-order and applicative-order interpreters for the A-calculus.

Since most functional languages can be considered syntactic sugar for the
A-calculus, our research concentrated on interpreters for the A-calculus. Our goal
was to determine the factors which affected the number of times identical sub-
expressions were evaluated. We believed intuitively that if an interpreter shared
larger sub-expressions, it would take fewer steps to find the normal form. To our
surprise, we found that this was not always true. We have shown in [5] that
Wadsworth's fully lazy interpreter [18] shares more sub-expressions than Henderson
and Morris' lazy interpreter [10] at each reduction step. Furthermore, we have given
a A-calculus expression for which the fully lazy interpreter takes more steps than the
lazy interpreter. This led us to define the notion of weak normal forms for which it is
in fact true that an interpreter that does more sharing takes fewer steps to find the
answer. The importance of weak normal forms is that practical interpreters return
weak normal forms as answers. We then showed that it is possible to transform any
expression so that a lazy interpreter reducing the transformed expression would

95

FUNCTIONAL LANGUAGES AND ARCHITECTURES

share the same sub computations as a fully lazy interpreter reducing the original
expression. Finally, the effect of representing A-expressions as combinatory forms
was explored. It was found that sharing was affected not by the alternative
representation itself but by the abstraction algorithm used to transform the
X-expression into the combinatory form.

3. THE MULTIPROCESSOR EMULATION FACILITY

3.1. The Emulator as a Prerequisite to the Dataflow Machine

The Tagged Token Dataflow Machine and associated programming environment
represent a radical departure from both the hardware and software for parallel
processing based on von Neumann processors communicating via shared memory.
A real challenge in building the first Tagged Token Dataflow Machine is to solve two
highly interrelated problems. Firstly, there are few large dataflow programs whose
dynamic behavior is well understood; estimates of dynamic behavior must be based
exclusively on the analysis of the source code expressed in dataflow languages
because of a lack of facilities for executing these programs. This method of gaining
insights into the behavior of dataflow programs can be applied to a very limited
number of application programs because it requires close cooperation of dataflow
and application experts. Application experts have little motivation to spend time to
understand the behavior of their applications on "hypothetical computers".
Secondly, the architecture of the Tagged Token machine is so different from
conventional processors that it is difficult to estimate some architectural parameters
(e.g.. size of buffers) whose effect on the overall performance of the machine may be
critical, without some concrete assumptions about the dynamic behavior of
programs. One way we are trying to resolve this paradoxical situation is by
implementing the Tagged Token Dataflow Machine on a multiprocessor emulation
facility.

3.2. The Emulator as an Interesting Parallel Processor

In addition to providing a highly productive vehicle for the direct emulation of large
scale dataflow programs, the Emulator is an interesting and innovative
multiprocessor in its own right. It is the first MIMD machine which can support
general. distributed, asynchronous processes that require relatively large amounts
of interprocess communication and can do so much more rapidly and be more cost-
effective than the equivalent simulation on a single very large SISD machine. This
unique characteristic is a result of two fundamental design decisions.

First, the Lisp workstations being used to build the facility are themselves powerful
machiies with sophisticated programming cnvire*iments. The power lies in the

96

FUNCTIONAL LANGUAGES AND ARCHITECTURES

supermini class internal architecture of a high-performance micro-engine, wide data
paths, and a high-speed memory subsystem. The machine also has an I/0 structure
capable of supporting a high-performance interprocessor communication
mechanism. The associated Lisp system provides a good environment for the
development of cooperating asynchronous processes, and thus also a good vehicle
for architectural exploration, assuming that each processing element (or each of its
subsystems) is viewed as a process.

Second, the interprocessor communication networks provide an instrumented,
flexible, and inherently fault-tolerant data transport mechanism that is well-matched
to the processor's throughput. The network is easily reconfigured and allows
evaluation of a variety of communication strategies including perfect n-cube, planar,
token ring(s), and shuffle exchanges. This permits empirical exploration of the
effects of interconnect topology and bandwidth on the overall machine performance.
The communication controller design is matched to the high.performance of the
Lisp Machine. It provides its own horizontal microcontrollers to permit transmission
and reception of messages concurrently with the normal program execution. Each
switch node supports an aggressive instrumentation, test, and maintenance
subsystem as well as managing the routing tables for the currently supported
network topologies.

In a sense, these two features are not new - at least when taken independently. It
is precisely the fact that mature, high-performance von Neumann machines like the
Lisp Machine and the theory of n-dimensional packet switching exist that reduces
the risk. and thus the time to completion, of the Emulator, What makes this
interesting is that this level of power, a necessary level to run meaningful programs,
has never been assembled in such a flexible and balanced fashion. Previous
implementations have either lacked processor poriormance, productive
programming environments or, the common problem, a well-matched
communication system that does not impose excessive processor overhead.
Compromises in design either due to cost or narrow intent haven taken their toll.
This really marks the first time that a parallel machine can directly execute and
instrument a reasonably broad class of distributed programs significantly faster than
an equivalent simulation on the largest uniprocessor systems.

3.3. Hardware Development

We view the Emulator as being an evolutionary step toward our goal of building a
VLSI Tagged Tuken Dataflow procescor. It will allow us to properly study this
radically different architecture without the usual constraints and commitment of
r~sourct, that are required for a typical hardware projcct. Also, the component of
the Emulator which is being itiventod, namely the communications network, is
crucial to the realization of a T,.ggcd Token Dataflow Machine. The network is being

97

FUNCTIONAL LANGUAGES AND ARCHITECTURES

designed in three phases, all oriented toward developing VLSI for packet
communication over high-speed serial point to point circuits. The circuit switch is
the first phase, while the packet switch and its VLSI version are the final two phases.

The Circuit Switch: In an effort to get a network operational, we decided to
adapt the network used by Bolt, Beranek, and Newman in their Butterfly
multiprocessor [14]. The switching node in this network is a 4x4 crossbar with 4 bit
wide data paths. These nodes are interconnected and centrally clocked to form a
synchronous network of arbitrary topology. Messages traversing the network carry
an encoding of the network path they are to take. The adaptation of the BBN design
required re-engineering the switch so that the network will be built solely out of
cards plugged directly into the backplanes of our Lisp Machines. As a
consequence, the design had to allow for longer inter-switch cables. More
importantly, we are designing the necessary buffering and control logic so that the
network presents as little processing load on the associated processors as possible.
Greg Papadopoulos and Eric Hagersten have been doing this design.

We believe there is a high probability that a system based on the circuit switch will
be operational within a year, as opposed to a system based on the packet switch
which may not be available for two years. In a move to reduce duplication of effort,
we have constrained both switch designs to share major subsystems. Our re-
implementation of the BBN circuit switch has proceeded smoothly since September.
We now have three of the four major subsystems designed and entered into our
Computer Aided Engineering station. An extensive discussion of the development
plan for the circuit switch can be found in [13].

Packet Switch: We think that a good network structure for the Emulator is a
hypercube of high speed, bidirectional, serial interconnections with full store and
forward logic at each switching node [12]. The exploratory design work by Robert
lannucci has shown the approach to be within the capability of modern engineering
techniques [11]. Nevertheless, to achieve the target speed and reliability, the serial
link drivers and receivers within the switch will be implemented with a mixture of
analog and digital circuits. Further, the internal logic of the switch places strong
demands on the cir,-, t technology for speed and, more critically, predictability. Off
the shelf logic typically has a very wide spread of "acceptable" performance
specified by the manufacturer. This large spread, when combined with the desire to
produce a robust design, forces the use of worst-case performance figures. This
typically translates directly into a bloating of the design in terms of chip count. It
should be noted that we are interested in medium sized volumes of assembled and
tested switch cards because of our own needs and anticipated need for those who
wish to replicate the Emulator.

To solve these problems, we have reached an agreement with IBM under which

98

FUNCTIONAL LANGUAGES AND ARCHITECTURES

they have installed a department of four full-time engineers at MIT for three yearm.
These engineers will help in the design. prototyping construction, and testing of this
packet network. We are studying the possibility of using an IBM serial data
communications circuit of their own design which more than meets our performance
goals. In addition, IBM will give us access (indirectly through their engineers) to a
medium capacity bipolar gate array technology and to their Engineering Design
System. This should solve our circuit testing problem because IBM will provide us
with tested gate array chips.

During the spring of 1983 a project to study the feasibility of a VLSI version of the
bit-serial transciever was undertaken in the advanced VLSI subject at MIT. It resulted
in the preliminary design of a 100 MHz serial data communications circuit based on
the MOSIS 1.2 pm two layer metal cMOS process [7]. The transmitter section
develops a Manchestcr coded data stream using asynchronous finite state
techniques. The receiver re-extracts data and clock from the Manchester waveform
using an on-chip phaselock loop.

We are continuing this VLSI effort because the bit-serial transreciever will be a
retrofitable part of this switch and has applications far beyond the Packet Switch. In
VLSI chips, the transistor to I/0 pin ratio will continue to increase and thus, as the
use of pins for inter-chip communication will rely more heavily on time multiplexing
techniques in the future. Our VLSI version of the bit serial transreciever set is very
robust and implements full flow control. It will allow a multichip system to be
designed according to the synchronous on-chip, a synchronous across-chip
methodology. Thus, traditional chip design techniques can be employed and the
need for centralized clocking eliminated.

3.4. Emulation Software

The Multiprocessor Emulation Facility, developed by Richard Soley, is a large body
of Lisp software which allows its user to quickly and easily prototype a single- or
multiprocessor computer architecture, and to then execute the proposed machine in
emulation. In order to achieve high emulation speed without excessive cost, and to
force systems architects to begin thinking of computers in a distributed,
multiprocessing way, the Emulation Facility is designed to execute on many parallel
Lisp processors, linked via a variety of communications media.

The general case of a multiprocessor is a group of various asynchronous
independent processing elements with no shared state, connected by a packet
communications network of arbitrary connectivity. MEF supports this type of
architc-cture directly, by providing a set of software abstractions which facilitate the
modcling of such an architecture in the Lisp language. The abstractions include
programs to defina experiments and logical processors. An experiment consists of

99

FUNCTIONAL LANGUAGES AND ARCHI TECTURES

the number and type of processors being emulated, their interconnection topology,
and other information pertinent to running the architecture in emulation. A logical
processc- is a Lisp program which exhibits the behavior of a physical processor in

the multiprocessor architecture by modifying local data representing the state of the
processor, and communicating with other processors by calling MEF's message

sending primitives. The MEF will also provide support tor dealing with the lower-

level issues of handling networks and protocols used on them, configuring emulated

topologies on top of different physical interconncctions of the Lisp Machines, etc.

In addition to these tools, the system includes more mundane subsystems, such as

the Control Panel. which acts as the bootstrap-load processor of the system,

configuring the Lisp Machines taking part in a particular emulation experiment,

broadcasting the experiment to be executed, anc setting p the communications
media for the desired interconnection topology. The conti ol panel subsystem also
pravides primitives for collection and display of various statistics, either during

execution, or afterward.

The MEF system automatically distributes logical processors in the experiment

over the physical Lisp Machines currently configured into the facility. In this way, an

experiment that requires sixteen logical procc'-ors can be run on the facility using

one. two, or more physical Lisp Machines. In addition, the Lisp Machines may be

partitioned into separate sub-facilities by he control panel. Jllowing multiple

emulation experiments to run at the same time.

Although the abstract structure outlined above was chosen for its generality in

emulating multiprocessor configurations, the skeptic winl immediately note that it
does not directly support such multinrocessor designs as synchronous procussOrs
(like the Connection Machine, or lliac IV) or the shared memory model (e.g..

C.mmp). In fact, this model is abstract enough to allow prototypical implementation

of even these models of parallel computation generaly, anothi virtual processing
element is added to the emulation experiment definition to model this shared

resource (e.g., clock or memory) of the system. This is actually (uile close to the
real hardware implementation of Such a system, in which a :enh al clock for

synchronous operation or a central shared memory will actuallly be a separate

subsystem of the architecture. In addition. intorceonnection eclims other than

packet-switching networks can be simulated oii top of our pi(Jet switch by using
the packets to simulate individual items in a continuous Stm,,ma coIrnunication

mechanism.

The implementation of the Multiprocessor Lmulation Ficildty is proceeding
smoothly. We currently have an Oril.Latron sys Vm, wrltcr d111irely in /ctaLisp.
running on five Symbolics 3670 processors. We coirtirue to urli, the tn!l megabit

Ether network. executing Chaos protocols. for our cor)runi(:,1tos mliimn. As

t00

FUNCTIONAL LANGUAGES AND ARCHITECTURES

work progresses on the circuit and packet switch hardware, we are in the midst of
preparation for use of those new and faster media.

We currently have two architectures in emulation. The first, written by Richard
Soley, is a simple von Neumann style machine, emulated as two logical processors
(one CPU and one MEMORY box) connected via a bus (all communications actually
pass through the Emulation Facility software, as described above). This simple
emulation provided a vehicle for debugging parts of the system.

We also have an emulated version of the Tagged Token Dataflow Machine running
on the Emulation Facility. This emulation, developed by Richard Soley, Paul Fuqua,
and Poh Lim, fully supports our current definition of the Tagged Token Dataflow
Architecture. We are already using the dataflow emulation experiment to tune the
design of the Tagged Token Dataflow Architecture. We are executing Id programs,
compiled into machine code, at the rate of one hundred dataflow machine
instructions per second,

We have an immediate pressing need for more speed in the dataflow emulation;
therefore, selected parts of the emulation facility and the dataflow experiment itself
are being hand -tuned to reach the goal of one thousand emulated dataflow machine
instructions per second.

4. RELATED TOPICS

4.1. Logic Programming

A great deal of attention has recently been given to the Fifth Generation Computing
project in Japan. mostly because of its focus on Logic Programming as the
programming method of choice. Logic Programming shares the "single assignment"
characteristic of Functional Programming, as well as the declarative style; hence, it
is of great relevance to our group. In order to learn more about Logic Programming,
during the lAP in January '84, an informal, week long workshop was held. Talks were
presented by Jan Komorowski. who was invited from Harvard, Michael Beckerle,
Gary Lindstrom (a visiting scientist from the University of Utah), Arvind, and Gordon
Robinson (from the Al Laboratory). The talks covered topics ranging from the
fundamentals of logic programming to current efforts in the parallel processing of
logic programs.

4.2. New Equipment

Five Symbolics 3600s were acquired as the first of 64 machines for the
Multiprocessor Emulation Facility. These machines are in the process of being

101

FUNCTIONAL LANGUAGES AND ARCHITECTURES

upgraded to 3670s. Each machine has 6 megabytes of main memory and one
machine is equipped with 500 megabytes of disk storage for file service. An
additional 1.6 gigabytes of disk memory was installed on the group's VAX-750, also
for file server use by the 3670s. A total of sixteen 3670s are expected by the end of
this year. Several IBM PCs, networked onto TCP/IP.speaking Ethernet, were also
obtained. The PCs are used for local editing, software development, and laboratory
instrumentation control.

4.3. Support Tools

As his first UROP project. Dinarte R. Morais. an undergraduate member of the
group, implemented an interactive illustrator program, which is now being used by
members of both the LCS and Al labs. The program, called ILLUSTRATE, is an
interactive illustrator for creating pictures composed of lines, curves and text
captions, and was modeled after the DRAW program available on Alto computers, as
described in the Alto User's Handbook,

The problems with using the existing DRAW program on the Alto computers include
the fact that pictures could not be very complicated due to the relatively small
amount of memory available. In addition, DRAW came as is and consequently could
not be custe'nized. Finally, the few Alto computers left are getting older and less
reliable, and it was hoped that ILLUSTRATE could allow our group to finally do away
with the Altos.

ILLUSTRAIF was implemented in ZetaLisp on a Symbolics 3600 Lisp Machine. The
advantages of ILLUSTRATE over DRAW are many. One advantage is that there is no
practical limit to the complexity of a picture created with ILLUSTRATE. More
importantly, we now have the ability to customize the program to suit our needs.

102

FUNCTIONAL LANGUAGES AND ARCHITECTURES

References

1. Arvind and lannucci. R. A. "Instruction Set Definition for a Tagged-
Token Dataflow Machine," Massachusetts Institute Technology
Laboratory for Computer Science, Computation Structures Group Memo
212-3, Cambridge, MA, February 1983.

2. Arvind, Culler, D.E., lannucci, R.A., Kathail, V.. and Pingali, K. "The
Tagged Token Dataf low Architecture," to appear as an MIT/LCS/TM.

3. Arvind, Gostelow, K.P. and Plouffe. W. "An Asynchronous Programming
Language and Computing Machine," University of California Technical
Report 114a, Department of Information and Computer Science, Irvine,
CA, December 1978.

4. Arvind, and lannucci, R.A. "A Critique of Multiprocessing von Neumann
Style," Proceedings of the Tenth International Symposium on Computer
Architecture, Stockholm, Sweden, June 1983.

5. Arvind, Kathail, V. and Pingali, K. "Sharing of Computation in Functional
Language Architectures," Proceedings of the Workshop on High-level
Language Architectures, Los Angeles, CA, May 1984.

6. Backus, J. "Can Programming be Liberated from the von Neumann
Style?" Communications of the ACM 21, 8 (August 1978) 613-641.

7. Bassett, P.D, Geldens, P.M., Goodhue, J.T. and lannucci, R. "Design of
a 100 MHz cMOS Phaselocked Manchester Encoder/Decoder Circuit,"
Term Paper in VLSI Subject 6.372, MIT Department of Electrical
Engineering and Computer Science. Cambridge. MA, 1982.

8. Burge. W.H. Recursive Programming Technipues. Reading, MA,
Addison-Wesley Publishing Company, 1975.

9. Heller, S. and Arvind "Design of a Memory Controller for the the
Massachusetts Institute of Technology Tagged Token Dataflow
Machine," Computation Structures Group Memo 230. MIT Laboratory
for Computer Science. Cambridge. MA, October 1983.

10. Henderson. P. and Morris, J.H. "A Lazy Evaluator," C(orf' twrce ,cord
of the Third ACM Symposiun on Principles of Progranm--Q Lanr,1q0s,
95-103, Atlanta, GA, January 1976.

103

f ,,I.(,lToNAL LA i(ILJAGES AND ARCHITECTURES

11. lannucci. R, "Packet Communication Switch for a Multiprocessor
Computer Architecture Emulation Facility." Computation Structures
Group Memo-220, MIT Laboratory for Comouter Science. Cambridge,
MA, October 1982.

12. Ng. G.W. "Design of a Packet Communication Switch for a
Multiprocessor Computer Architecture Emulation Facility Part 1: Clock
Subsystem. Functional Languages and Architectures Group Design
Note 2, MIT Laboratory for Computer Science. Cambridge, MA,
November 1983,

13. Papadopoulos. G.M., lannucci. R.A. and Chiang, C.J. "Preliminary
Design for MEF Near-Term Communication Switch," Functional
Languages and Architectures Group Design Note 4, MIT Laboratory for
Computer Science, Cambridge. MA, January 1984.

14. Rettberg. R.. Wyman. C.. Hunt. D., Hoffman, M., Carvey, P., Hyde, B.,
Clark. W. and Kraley, M. "Development of a Voice Funnel System:
De:sign Report," Bolt Beranek and Newman, Inc. Technical Report 4098,
Cambridge. MA. August 1979.

15 Traub, KR. "An Abstract Architecture for Parallel Graph Reduction,"
MIT/LCS/FR 317, MIT Laboratory for Computer Science, Cambridge,
MA, September 1984.

16. Turner. D.A. "A Now Implementation Technique for Applicative
Languages." Software -- Practice and Experience 0 (1979) 31-49.

17 Turner. D.A. "The Semantic Elegance of Applicative Languages."
F ;,f- i7al Progralming Languages and Computer Architecture 85-92,

October 1981.

18, Wadsworth. C.P. SemantIcs and Praqmnatics of the Lambda-Calculus,
University of Oxford Press, Oxford England, 1971.

Publications

1 Arvind. Dertouzos. M.L. and lannucci. R.A. "Multiprocessor Emulation
Facility. MIT/LCS/TR-302, MIf Laboratory for Computer Science,
Cambridge. MA. September 1983.

2. Arvind and l;nnucci, R A "Two Fundmnental Issues in Multiprocessing:
Tho Dataflow Solution." MIT/!CS/TM ;;41 MIT Laboratory for Computer
Eni+ nce. Canibridqe MA. September 1983.

104

INFORMATION MECHANICS

Academic Staff

E. Fredkin, Group Leader

Research Staff

T. Toffoli G. Vichniac

Graduate Student

N. Margolus

Undergraduate Students

S-W. Chen C. Ferreira

Support Staff

R. flegg

IMAGINAIVE SYSTEMS

7. Stamos. J. "Remote Evaluation," Ph.D. dissertation. MIT Department of
Electrical Engineering -, d Computer Science, Cambridge, MA,
expected Juno 1985.

Talks

1. Gifford, D. "The Technology Behind the Boston Community Information
System,"

University of Washington, May 1984.
University of California, May 1984.
Stanford University, May 1984.
IBM T. J. Watson Research Center, April 1984.
Carnegie-Mellon University, April 1984.

2. Gifford, D. "Data Communication Aspects of the Boston Community
Information System," AT&T Bell Laboratories, February 1984.

3. Gifford. D. "The Boston Community Information System," Xerox Palo
Alto Research Center, November 1983.

118

IMAGINATIVE SYSTEMS

Publications

1. Gifford. D. K. and Spector, A. Z. (ed.) "The TWA Reservation System,"
Communications of the ACM, (July 1984).

2. Lucassen, J. "The Personal Information System," Imaginative Systems
Group Memo No. 1, MIT Laboratory for Computer Science, Cambridge,
MA, February 1984.

3. Stamos, J. W. "Static Grouping of Sma;I Objects to Enhance
Performance of a Paged Virtual Memory," ACM Transactions on
Computer Systems, 2, 2 (May 1984).

Thesis Completed

1. Lamb, C. "A Screen Oriented Data Base Editor," S.B. and S.M. theses,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, August 1983.

Theses in Progress

1. Carnese, D. "An Analysis of the Type Systems of Five Contemporary
Programming Languages which Support Synthetic Type Definition,"
S.M. thesis. MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected August 1984.

2. Chiang, C. "Primitives for 3D Graphics," S.M thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA,
expected June 1985.

3. Gunther. B. "A Personal Database System for the IBM XT," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge. MA, expected June 1985.

4. Hyre, R. "Personal Map Systems," S.B. thesis MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA,
expected June 1985.

5. Lucassen, J. Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected June
1986.

6. Schooler, R. "Partial Evaluation as a means of Language Extensibility,"
S,M. thesis. MIT Department of Electrical Engineering and Computer
Science. Cambridge. MA. expected August 1984.

117

IMAGINATIVE SYSTEMS

4. PARTIAL EVALUATION AND PROGRAMMING LANGUAGE
DESIGN

This is a new activity in our group, and is work that has been done in conjunction
with two of my graduate students, John Lucassen and Richard Schooler. The basic
thesis of the work is that if built-on types are roughly as efficicnt as built-in types then
programming languages will be more flexible and able to meet the needs of their
users than is possible to achieve with current techniques. The optimization
technology that we have been exploring is called partial evaluation because it
evaluates a program as best as possible given partial information. The language that
we are using for our work on partial evaluation is called IBL. and it strongly
resembles Scheme. In the past year we have completed a partial evaluator that has
successfully optimized programs that used a message passing system, and the
partial evaluator has also converted an interpreter for a simple declarative rule-
based language into a compiler for the same language.

Our plan for next year is to complete a front-end for our language work that will
transform Modula-2 into IBL. All type computations will be made explicit in the
transformation. Because Modula-2 is strongly typed all type computations and
checks will be performed by partially evaluating the I8L result of the front-end.

116

IMAGINATIVE SYSTEMS

2.4. Plans for the Next Year

In the next year, we plan to improve the system we are operating in a number of
ways. First, we plan to add new information sources, including the Associated
Press. We have also started a joint effort with the Boston Convention and Tourist
Bureau to add visitor and event information to our system. Second, we plan to add
personal computer access to our central site database system. This will allow
information that was missed when it was broadcast or historical information to be
retrieved in the same framework that is used in our present personal database
system. Finally, we plan to evaluate the experiences of our initial test audience.

3. ADVANCED GRAPHICS SUPPORT FOR USER INTERFACES

In support of our work on community information systems we have been working
on new types of user interfaces. One application that we have built is a browser for a
street map of the Boston area. It permits one to look at a digital map of the entire
area, zoom in on locations, and find a place given a street address. The original
implementation of the Boston map system was on a Syrnbolics 3600, a fairly
expensive personal machine. The map system work is continuing on low-cost
Macintosh personal computers, and we are exploring ways of integrating it with new
databases that we will be receiving from the Buston Convention and Tourist Bureau
and the Massachusetts Bay Transportation Authority.

In a related project we are trying to discover what user interface metaphors will be
useful beyond the window system and mouse ideas that were made popular by bit-
map displays. To do this, we are using an advanced display system provided by the
combination of a Symbolics 3600 and the Sticon Graphics IRIS system. The Silicon
Graphics IRIS is a polygon display engine that will display an animated color scene
of 300 polygons in real time.

In the past year, we have completed a 3D graphics library for the Symbolics 3600
that sends graphics commands to the IRIS over a serial line. This link has been used
to show portions of 3D databases that we have received from NASA, including the
space shuttle. Our goals for next year for the 3600/IRIS system are to have the 3600
communicating with the IRIS via an IP/TCP byte stream on an Ethernet, to fully
specify and implement a graphics library that permits direct specification of
kinematics, and to bring up a simple application that demonstrates the capabilities of
the foundation that we are building.

115

IMAGINATIVE SYSTEMS

character buffer is chosen to be large enough to buffer characters for the maximum
latency between service times from the receive task. Once the receive task starts
running it begins to empty the character buffer. The character stream is
reassembled into packets, the checksum on the packets is checked, and the packets
are reassembled into a complete segment in a buffer area. If the segment is
encrypted then the proper key is computed and the segment is decrypted in place.

Once a segment has arrived and has been decrypted it is checked against the
user's filter. The algorithm that is used to check a text segment against a user's
keyword filter is very efficient, and runs in time linear in the size of the segment.
Thus users are not penalized for having complex filters. If an incoming segment
does not match a user's filter, it is discarded. However, if the segment does match
the filter it is written to a new file on the local disk and the file is indexed in the local
database directory.

As mentioned earlier, while all of this is going on the user task services requests
from the keyboard. The user interface allows users to type in queries that are the
same as filter predicates. Queries are boolean combinations of words, phrases, and
specifiers of subject, author, source, importance, and so forth. Once a query is
entered it is decomposed and the local database directory is searched for matching
entries. The entries that result are displayed in a menu format on the screen. At this
point a user can select a specific entry for display by adding its number to the query
that is ;n the input line, or the user can enter an entirely new query. The user
interface includes a simple window manager that responds to page up and page
down keys in the event output will not fit on a single screen. There is also a built in
help facility that will provide instruction on how to use the system.

2.3. Digital Radio Receiver Design

To support an experimental user population we have designed and built 20
receivers for our broadcast digital signal (D. Gifford). The receiver is in a small box
that has input connections for an antenna and power and it has a single RS-232
compatible output connection that plugs into the serial port of a home computer.
The parts cost of the receiver is approximately $130. This includes a standard FM
receiver front-end card that we buy from an outside supplier, a power supply, and
our own PC card that implements the subcarrier demodulator.

The subcarrier demodulator is comprised of seven integrated circuits and an
assortment of discrete components for the analog part of the board. The subcarrier
demodulator works by taking the output of a standard FM receiver and first removing
the normal programming on the channel with a 4-pole active filter. The oulput of the
filter is sent to an FSK receiver chip that uses a phased-locked-loop to recover the
data and provide an RS-232 signal on the output terminals of the receiver.

114

IMAGINATIVE SYSTEMS

The flow of information in our system is as follows. Information is received at our
central database system at MIT from a number of sources, including the New York
Times. The information is put into standard form and placed in a database. This
datalase can be searched on-line and users can also keep profiles of their interests
and the system will automatically send them a message when information arrives
that matches their profile. In addition, a program called the scheduler (S. Berlin)
monitors arrivals to the database and schedules them for transmission out over our
broadcast channel to remote personal computer users. A typical information item is
transmitted a number of times, but the frequency of transmissions can depend on
the type and priority of the information item.

The communication channel that we use to communicate with remote users is a
4.8 KBit/second broadcast channel that is piggybacked on a normal FM broadcast
station. The channel uses asynchronous signalling to keep the cost of receiver
hardware low; the receiver that we have designed plugs directly into the RS-232 port
of personal computers.

To use the communication channel effectively we have developed a broadcast
packet protocol. This protocol allows multiple data streams to be multiplexed on a
single channel, and provides for packet error detection and error recovery. A
theoretical model of the communication channel that we developed allowed us to
compute the optimum packet size for our system. The model requires the byte-error
rate as an input parameter. Empirical tests were done at various locations in the
Boston area to compute the byte or ror rate of our system.

The next layer of protocol up from packet transport provides for the transport of
arrays of bytes called segments. Software above the segment layer is insensitive to
the packet size that we use and the number of packet retransmissions that are done
to enhance reliability. The segment layer also provides for encryption. A
master/sub-master scheme is used so that the compromise of a single segment key
will not disclose a master key.

2.2. Personal Database Software

The personal database software that we have completed (J. Lucassen) serves two
functions. First, the receive task listens to the packet radio broadcasts and keeps
the local database up-to date. Incoming database updates are incorporated if they
pass a filter that the user has specified. At the same time that the receive task is
keeping the database up to date. the user task processes queries from users. These
two tasks run as separate processes under MS-DOS using a package written by the
Computer Systems and Communications Group of our Laboratory.

The receive tak services a character buffer that is filled at interrupt level. The

113

IMAGINA1 IVE SYSTEMS

1. INTRODUCTION

The Imaginative Systems Group is involved in a project to build and experiment
witn new types of man-macnine communication systems. The first system that we
have built is a large-scale community information system that is now operating in the
Boston area. As described below, information is transmitted via a broadcast packet-
radio system to home computers where it is received by a customizable personal
dataoase system. The next section aescribes tnis work in detail. A second project
that we nave oeen invoivea in is the optimization of programming languages by a
technique calied partial evaluation. The results of the first partial evaluator that we
built were encouraging, and we are proceeding to build a front-end for a
contemporary programming ianguage to test our ideas further. The second section
of our group's progress report gives a description of what we have accomplished in
this area in the past year.

2. THE BOSTON COMMUNITY INFORMATION SYSTEM

As described in our original DARPA proposal, we are engaged in building a new
type of community intormation system. The system has a number of novel aspects
that differentiates it from other such systems. First, it uses a synthesis of uni-
directional (broadcast) packet radio communication and personal computers to
provioe a customized inrormation service. Second, because uni-directional
communication is used] me system can ue used by an arbitrary number of users.
Third, an extensive protection mecnanism has oeen specified and implemented that
provioes tine-grainea access control. Access can be controlled on the basis of
intormation source, or access can be limited to certain time periods. Finally, we
provide a sopnistcatea query interface based on free-text searching as opposed to
simpier menu-basea approaches used in other community information systems.

In the past year we nave oegun regular transmissions of information over our
broadcast pacKet-radio system, compieted the design and implementation of our
personal daraoase sortware for the IBM PC, and finished the first build and checkout
of 20 data receivers for our test of the system this summer. The following
paragraphs oescribes each of these accomplishments in more detail,

2.1. Broaacast Packet Radio System

Our reguiar transmissions to home computers began on April 15, 1984. The FM
radio station mat we use, MIT's WMBR, is on the air for approximately 14 hours a
aay. During this time we transmit our packet protocol on their subcarrier. Our tests
in the field show thait on WMBR's 200 watt transmitter with 10% subcarrier injection
we acnieve a primary service area that lies within five miles of the transmitting tower
in Kendall Square, Camoridge.

112

IMAGINATIVE SYSTEMS

Academic Staff

D. Gifford, Group Leader

Research Staff

S. Berlin

Graduate Students

C. Chiang R. Schooler
D. Carnese J. Stamos
J. Lucassen

Undergraduate Students

K. Buttner E. Olson
B. Gunther R. Rabines
F. Huettig J. Yoon
R. Hyre R. Zee
D. Lane

Support Staff

R. Bisbee

FUNCTIONAL LANGUAGES AND ARCHITECTURES

21. Pingali, K.K. "Demand Driven Evaluation on Dataflow Machines,"
University of California, Irvine, CA, May 27, 1984.

22. Pingali, K.K. "Demand Driven Evaluation on Dataflow Machines," IFIP
Working Group 2.2 Meeting, MIT Endicott House, Needham, MA, June
12,1984.

23. Soley, R. M. "A General Multiprocessor Emulation Facility," First Annual
ACM Northeast Regional Conference, University of Lowell, Lowell, MA,
March 20,1984.

109

FUNCTIONAL LANGUAGES AND ARCHITECTURES

8. Arvind "The Tagged-Token Dataflow Machine," University of Delaware,
DE, March 19,1984.

9. Arvind "Fundamental Issues in the Design of Multiprocessor
Computers," University of Texas, Austin, TX, March 26,1984.

10. Arvind "The Dataflow Solution," University of Texas, Austin, TX, March
27,1984.

11. Arvind "Sharing of Computation in Functional Language
Implementations," International Workshop on High-Level Computer
Architectures, Los Angeles, CA, May 24, 1984.

12. Arvind "Sharing of Computation in Functional Language
Implementations," IFIP Working Group 2.2 Meeting, MIT Endicott
House, Needham, MA, June 12,1984.

13. Brobst, S. A. "Simulation Techniques in the Design of a Data Flow
Supercomputer," 1984 Summer Computer Simulation Conference,
Boston, MA, July 24,1984.

14. Culler, D. E. "Why Dataflow Architectures?," Fourth Jerusalem
Conference on Information Technology, Jerusalem, Israel, May 1984.

15. Heller, S. K. "Design of a Memory Controller for the MIT Tagged Token
Dataflow Machine," IEEE International Conference on Computer
Design, Portchester, NY, October 31, 1983.

16. lannucci, R.A. "VLSI: The Next Cottage Industry?," IBM Glendale
Laboratory, Endicott, NY, September 14,1983.

17. lannucci, R.A. "Phaselocking for Fun and Profit," MIT VLSI Design
Review, Cambridge, MA, December 1983.

18. lannucci, R.A. "Dataflow Architecture: an Introduction," IBM Glendale
Laboratory, Endicott, NY, December 1983.

19. lannucci, R.A. "Dataflow Architecture: an Exercise in Top-Down
Design," IBM Glendale Laboratory, Endicott, NY, December 1983.

20. Papadopoulos, G.M. "Dataflow Models for Fault-Tolerant Control
Systems," American Control Conference, San Diego, CA, June 1984.

108

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Theses in Progress

1. Beckerle, M. J. "The Graph Resolution Method for Logic Programming,"
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected April 1985.

2. Brobst, S. A. "Token Storage Requirements in a Dataflow
Supercomputer," MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected May 1985.

3. Culler, D.E. "Resource Management for the Tagged-Token Dataflow
Architecture," MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1984.

4. Soley, R. M. "Generic Software for the Emulation of Multiprocessor
Architectures," MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1984.

5. Vata, B. "A Resource Management Poicy for the Tagged-Token Data
Flow Machine," MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected December 1984.

Talks

1. Arvind, "The Tagged-Token Dataflow Machine," Honeywell Avionics
Division, Minneapolis, MN, August 19,1983.

2. Arvind "The Tagged-Token Dataflow Machine," The Sixteenth IEEE
EASCON, Washington DC, September 19,1983.

3. Arvind "Two Fundamental Issues in Multiprocessing," The 1983 IFIP's
Congress, Paris, France, September 23,1983.

4. Arvind "The Tagged-Token Dataflow Machine," IBM-Research, Zurich,
Switzerland, September 26,1983.

5. Arvind "The Tagged-Token Dataflow Machine," General Electric,
Schenectady, NY October 18, 1983.

6. Arvind "The Tagged-Token Dataflow Machine," ICOT, rhe Institute for
New Generation Computers. Tokyo, Japan, January 18, 1984.

7. Arvind "The Tagged-Token Dataflow Machine," Yale, New Haven, CN
March 7, 1984.

107

FUNCTIONAL LANGUAGES AND ARCHITECTURES

13. Pingali, K. and Arvind, "Efficient Demand-Driven Evaluation (11),"
MIT/LCS/TM-243, Laboratory for Computer Science, Cambridge, MA
September 1983.

14. Pinkerton, J. T., lannucci, R.A. and Papadopoulos, G. M. "A
Comprehensive Hardware Laboratory for the Multiprocessor Emulation
Facility," MEF Design Note #4, MIT Laboratory for Computer Science,
November 1983.

15. Soley, R. M. "A Third Opinion on Dataflow Machines and Languages,"
to appear in IEEE Computer.

Theses Completed

1. Fuqua, P.C. "Emulating the I-Structure Memory for the Tagged-Token
Dataflow Machine," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

2. Muriph, S. W. "Optimized Execution of the APL Structured Functions,"
S.M. thesis, ,IT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

3. Chambers, T. B. "A Database System for Parameters of Data Flow
Machine Simulation," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

4. Desai, E. D. "Specification for a High Speed Point to Point Serial Data
Communication Circuit," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

5. Douglass, S. A. "Demand-driven Efficiency on Dataflow Machines," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

6. Traub, K. R. "An Abstract Architecture for Parallel Graph Reduction,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

7. Ying, J. J. "Instrumentation to Collect Statistics for a Multiprocessor
Emulation Facility," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

106

FUNCTIONAL LANGUAGES AND ARCHITECTURES

3. Arvind, Kathail, V. and Pingali, K.K. "Sharing of Comoutation in
Functional Language Implementations," Proceedings of the Workshop
on High-Level Language Architectures, Los Angeles, CA, May 1984.

4. Arvind and Culler, D.E. "Why Dataflow Architectures?" Proc.edings of
the Fourth Jerusalem Conference on Information Technoloqy,
Jerusalem, Israel, May 1984. (Also CSG Memo 229-1)

5. Bassett, P. D., Geldens, P., Goodhue, J.T. and lannucci, R.A. "A 100
MHz. cMOS Manchester Encoder/Decoder Circuit" MEF Design Note
6, MIT Laboratory for Computer Science, Cambridge, MA, May 1983.

6. Brobst, S.A. "Simulation Techniques in the Design of a Data Flow
Supercomputer," Proceedings of the 1984 Summer Computer
Simulation Conference, Boston, MA, July 1984.

7. Desai, E. D. and Pinkerton, J.T. "Design of a Packet Communication
Switch for a Multiprocessor Computer Architecture Emulation Facility
Part 2: Input FIFO, Output Buffer, Sequencer, and Scheduler, MEF
Design Note # 3, MIT Laboratory for Computer Science, Cambridge MA,
September 1983.

8. Desai, E. D. "Specification for a High Speed Point to Point Serial Data
Communication Circuit," MEF Design Note #8, MIT Laboratory for
Computer Science, Cambridge, MA, May 1984.

9. Heller, S.K. and Arvind, "Design of a Memory Controller for the MIT
Tagged-Token Dataflow Machine," Proceedings of IEEE ICCD 83,
Portchester, NY, October 1983. (Also CSG Memo 230)

10. Ng, G., "Design Of A Packet Communication Switch For A
Multiprocessor Computer Architecture Emulation Facility Part 1: Clock
Subsystem" MEF Design Note #2, MIT Laboratory for Computer
Science, Cambridge, MA, September 1983.

11. Papadopoulos, G.M. and Arvind "Dataflow Models for Fault-Tolerant
Control Systems," American Control Conference Proceedings, San
Diego, CA, June 1984.

12. Pingali, K. and Arvind, "Efficient Demand-Driven Evaluation (I),"
MIT/LCS/TM-242, Laboratory for Computer Science, Cambridge, MA,
September 1983.

105

INFORMATION MECHANICS

1. INTRODUCTION

One of the goals of information mechanics is to explore the possibility of virtually
nondis-'pative computing. To this end, it is necessary to establish a very close
match between the logical structure of the desired computation and the physical
structure of the computer that should carry it. This approach has given significant
insights into the information-processing aspects of reversible dynamical systems. It
has also provided novel, conceptually attractive tools in the mathematical modeling
of physics.

The theoretical aspects of our work were complemented and stimulated by work
concerned with the efficient implementation of such abstract tools by means of
special-purpose machines.

2. A MATURE VERSION OF THE CELLULAR AUTOMATON
MACHINE

After three years of design and development, CAM (Tom Toffoli's high-
performance machine dedicated to the simulation of cellular automata and other
distributed discrete dynamical systems) this spring has reached a mature form under
which it will get into the world. System Concepts (San Francisco, CA) is now
building a version that fits a single slot of the IBM PC. This version should be
commercially available this fall. Norm Margolus has provided a FORTH package to
drive the now CAM.

3. A NEW CLASS OF CELLULAR AUTOMATA

Our research this past year has received a big boost following the discover (by
Norm Margolus) of a new family of cellular automata based on local functions with
equal numbers of inputs and outputs [3]. In these "partitioning" cellular automata
(PCA), many properties of the overall evolution carry over in a straightforward
manner from those of the local evolution. For example, if the local mapping is
invertible, so is the global mapping.

The Billiard.Ball-Model-Cellular-Automaton (BBMCA). an instance of PCA provides
a basis for universal computation since it simulates a classical mechanical model of
computation [3]. It thus constitutes a laboratory in which to study, among other
things, the relevance of energy and entropy analogues in computer models. The
BBMCA also yields a description of deterministic computations which could, in
principle, operate within the constraints of a local quantum-mechanical Hamiltonian
[4]. We are studying the question of whether a truly parallel quantum
implementation of such a cellular automaton can operate at a uniform computational
rate. If this is the case. an important barrier to computation using elements of atomic
dimensions will have been passed.

120

INFORMATION MECHANICS

4. PARALLEL COMPUTATION OF THE DYNAMICS OF
DISTRIBUTED SYSTEMS

Cellular automata provide a stimulus to designing algorithms which effectively
exploit the potential of massively parallel hardware. Gerard Vichniac [5] has studied
the effects of synchronous updating in a regular network of locally interconnected
Boolean variables (i.e., Ising spins). Surprisingly, even in this very simple instance of
distributed system, one must strictly follow somewhat counter-intuitive rules in order
to make a full use parallel computational resources [1].

5. DISCRETE REPLACEMENTS

While digital computers are discrete objects, the language of most mathematical
physics employs continuum structures (viz., differential equations). In order to
overcome this mismatch and let computers do what they do best, i.e., logical
manipulation of bits as opposed to necessarily imprecise floating-point arithmetic --
we have investigated finitary models based on the combinatorics of a large number
of discrete variables. We have found, using PCAs, that the well-known parabolic
("heat") Pnd hyperbolic ("wave") partial differential equations are the limits, over
distances much greater than the mean free path, of suitable lattice gases of binary
variables.

We have continued this year our program of reducing concepts from physics to
computational primitives such as counting, labeling, and comparing [5][2]. We
recently found that any iterated deterministic manipulation on a random
configuration of symbols is analogous to tWe quenching of a disordered system to
low temperatures. This sheds some new light on the processes of ordering via
domain growth and interface motion.

6. THE QCD MACHINE PROJECT

We have been involved since January 1984 in the design and construction of a
special-purpose machine for calculating properties of elementary particles on the
basis of Quantum Chromodynamical (QCD) theoretical formulations. This machine
will be based on VLSI processing elements connected to parallel data streams
coming from a very large RAM. It will actually calculate inverses of very large
sparser matrices, and should apply to a wide class of different problems, in particular
to the numerical solution of partial differential equations.

This project is carried on in collaboration with R. Giles (MIT Center for Theoretical
Physics), R. Brower (visitor from University of Santa Cruz Department of Physics),
and R. Suaya (Fairchild Corporation). The particular input of our group in this
collaboration consists in applying the experience we have gained with the

121

INFORMATION MECHANICS

construction of CAM in special-purpose computer architecture, in particular in the
problems concerning memory management and interfacing the special machine with
a host goncral purpose computer.

7. A WORKSHOP ON PHYSICS AND COMPUTATION

In order to promote a rapid communication of recent results and an exchange of
information among leading physicists and computer scientists, we organized the
Second International Workshop on "Physics and Computational Processes," that
was held in January 1984.

122L

INFORMATION MECHANICS

References

1. Brower, R., Giles, R. and Vichniac, G. "Cellular Automata and the
Parallel Computations of Ising Spins," MIT Laboratory for Computer
Science, Cambridge, MA, to appear.

2. Fredkin, E. "Digital Information Mechanics," MIT Laboratory for
Computer Science, Cambridge, MA, to appear.

3. Margolus, N. "Physics-like Models of Computation," Physica 1OD (1984)
81-95.

4. Margolus, N. "Quantum Computation," MIT Laboratory for Computer
Science, Cambridge, MA, to appear.

5. Vichniac, G.Y. "Simulating Physics with Cellular Automata," Physica
IOD (1984) 96-116.

Publications

1. Farmer, D. and Toffoli, T. Proceedings of the Cellular Automata
Workshop, S. Wolfram (ed.), North Holland Publishing, 1984. Also in
Physica D IOD (1984) 1 and 2.

2. Ritzenberg, A.L. and Vichniac, G.Y. "Exact Results in a Periodically
Driven Ising Model," MIT Laboratory for Computer Science, Cambridge,
MA, to appear.

3. Toffoli, T. "CAM: A High Performance Cellular-Automaton Machine,"
Physica 1OD (1984) 194-205.

4. Toffoli, T. "Cellular Automata as an Alternative to (rather than an
Approximation of) Differential Equations in Modeling Physics," Physica
1OD (1984) 117-127.

5. Toffoli, T. "A Comment on 'Dissipation and Computation'," to appear in
Phys. Rev. Letter, 1984.

6. Vichniac, G.Y. "Instability in Discrete Algorithms and Exact
Reversibility," SIAM Journal AIg. Disc. Methods, 5, 4 (December 1984),
to appear.

123

INFORMATION MECHANICS

Thesis in Progress

1. Margolus, N. "Physics and Computation," Ph.D dissertation, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected 1985.

Talks

1. Toffoli, T. "CAM: A High-Performance Cellular Automaton Machine,"
IBM T.J. Watson Research Center, Yorktown Heights, NY, March 7,
1984.

2. Toffoli, T. "Dedicated Hardwares for the Physical Problems: Ising Spins
in the Microcanonical Ensemble, and QCD," Brookhaven National
Laboratory, Brookhaven, NY, May 2,1984.

3. Vichniac, G.Y. "Simulating Physics with Cellular Automata,"
Northeastern University, Boston, MA, October 1983
Schlumberger-Doll Research, NJ, November 1983
MIT Chemical Physics Colloquium, Cambridge,

November 1983
Nuclear Theory Seminar, University of Maryland,

February 1984
IBM T.J. Watson Research Center, Yorktown Heights, NY,

March 1984
Joint Theoretical Physics Seminar, Cambridge, MA,

March 1984
Argonne National Laboratory, May 1984

4. Vichniac, G.Y. "Faster than 1000 Vaxes," Physics Department,
University of Chicago, Chicago, IL, May 16, 1984.

5. Vichniac, G.Y. "Demonstration of the CAM Machine,"

Rutgers University Statistical Mechanics Meeting, December
1983.

Disorderly Growth and Scaling, Exxon Meeting, Princeton,
NJ, August 1983.

124

MESSAGE PASSING SEMANTICS

Academic Staff

C.E. Hewitt, Group Leader

Research Staff

Gerald Barber

Support Staff

C. Smith

MESSAGE PASSING SEMANTICS

1. OPEN SYSTEMS

Through this report, we describe some problems and opportunities associated with
describing and taking action in the kind of "open systems" we foresee must and will
be increasingly recognized as a central line of computer system development.
Computer applications will be based on communication between systems which will
have been developed separately and independently. Some of the reasons for
independent development are the following: competition, different goals and
responsibilities, economics, and geographical distribution. We must deal with all the
problems that arise from this conceptual disparity of systems which have been
independently developed. Systems will be open-ended and incremental --
undergoing continual evolution. There are no global objects. The only thing that all
the various systems hold in common is the ability to communicate with each other.
In this paper we study description and actions in Open Systems from the viewpoint of
Message Passing Semantics, a research program to explore issues in the semantics
of communication in parallel systems such as: negotiation, transaction management,
problem solving, change, and self-knowledge.

The kind of systems we envisage are be open-ended and incremental --
undergoing continual evolution. In an open system it becomes very difficult to
determine what objects exist at any point in time. For example a query might never
finish looking for possible answers. If a system is asked to find all the current mail
address of people who have graduated from MIT since 1930, it might have a hard
time answering. It can give all the telephone numbers it has found so far, but there is
no guarantee that another one can't be found by more diligent search. These
examples illustrate how the "closed world assumption" is intrinsically contrary to the
nature of Open Systems. We understand the "closed world assumption" to be that
the information about the world being modeled is complete in the sense that all and
orly the relationships that can possibly hold among objects are those implied by the
given information at hand [33]. Systems based on the "closed world assumption"
typically assume that they can find all the instances of a concept that exist by
searchinq their local storage. In contrast we desire that systems be accountable for
having evidence for their beliefs and be explicitly aware of the limits of their
knowledge. At first glance it might seem that the closed world assumption, almost
universal in the A.I. and database literature, is smart because it provides a ready
default answer for any query. Unfortunately the default answers provided become
less realistic as the Open System increases in size.

2. DESCRIPTIONS OF BEHAVIOR

To build a conceptual modeling system for Open Systems, we need to develop a
coherent understanding of the semantics of concurrent message passing systems.
Message Passing Semantics is a research program to explore issues in the

126

MESSAGE PASSING SEMANTICS

semantics of communication in parallel systems. It builds on 4,ctor Theory as a
foundation for the conceptual modeling of Open Systems. This involves important
aspects of parallelism and serialization beyond the sequential coroutine message
passing developed in systems like Simula and SmallTalk.

An actor system is composed of abstract objects called actors. Actors are defined
by their behavior when they accept communications. When a communication is
accepted an actor can perform the following kinds of actions concurrently: make
simple decisions (such as whether some actor it received in the communication is
the same as one of its acquaintances), create new actors, transmit more
communications to its own acquaintances as well as the acquaintances of the
communication accepted, and change its behavior for the next message accepted
(i.e., change its local state) subject to the constraints of certain laws [17].

3. AN EXAMPLE

In this section we describe the behavior of a simple actor which is a shared
checking account which we will call ACCOUNT43. One kind of description might
be a partial description of what happened when the actor ACCOUNT43 with a
balance of $10 accepted a request to make a deposit with amount $2 for customer
c2, and as a result created the actor $12, sent a Completion report to c2, and
became an account with balance $12:

127

MESSAGE PASSING SEMANTICS

ACCOUNT43

Kea Actor
I(with balance $10)
I(wth behavior

(j Behavior
(with cornmunicationAcceped

(a Request

(With -eago
(il Deposit (with amount a)))

(wit customer c)))

(with becomes
(new Account (th± balance ($10 + a))))-

(with sendTo
(I ReptyTo

(wthM target c)
(with message (il Comptetion))))

.................. L

*ACCEPTED

N.10
I Request
I(withessage

I a Deposit (with amount $2))),
I(with customer c2))

*BECAME * c2 *

I(jn Actor
(& titbalance $12)
1with behavior

I (a Behavior
I (with commuiiicatioriAccepted

(a Request
(witt message

I(a Deposit (ifl amount a)))
(wfith customer c)))

I (With becomea

I (rew Account (ith balance ($12 + a)))) I
I (with sendTo

(@uxx(a) ReptyTo

I (with target C)
I (With Mesmage (a Completion))))

A Happening

MESSAGE PASSING SEMANTICS

Complete descriptions of the history of what happened can be constructed by
keeping careful records of ongoing computations. The Time Warp System [211 is a
particularly elegant way to collect and keep the records in a useful format. Such
records can be used by an actor in an Open System to keep track of the effects of its
actions. However these records do not in general make the effects of a given action
deterministic because of the effects of other actors in the Open System. Taking the
same action in the future in what appears to a single actor as being identically the
same circumstances as when the action was previously taken can have different
effects in an Open System.

The modeling of shared resources is fundamental to Open Systems. Actor systems
aim to provide a clean way to implement effects (not "side-effects" a term that has
been used as a kind of curse by proponents of purely applicative programming in the
lambda calculus). By an effect we mean a local state change in a shared actor which
causes a change in behavior that is visible to other actors. For example sending a
deposit to an account shared by multiple users should have the effect of increasing
the balance in the account.

ACCOUNT43 is an example of the kind of shared resource which is important in
the conceptual modeling of Open Systems. Such shared resources should be
suitaLe for use by a growing collection of users. To a given user, a shared
SharedAccount will exhibit indeterminacy in the balance depending on the
deposits and withdrawals made by other users. The indeterminacy arises from the
indetciminacy in the arrival order of messages at the shared account.

A SharedAccount inherits attributes and behavior from both the description of an
Account and the description of a Possession.

...............................
I(an Account

I (with balance an Amount))) I
..............................

S

I f!a Possession

I I(h owners (a Set)))) i

II

I is

........... .
I (SharedAccount) I

Multiple Inheritance

129

MESSAGE PASSING SEMANTICS

Dealing with the issues raised by the possibility of being a specialization of more
than one description has become known as the "Multiple Inheritance Problem". A
number of approaches have been developed in the last few years including the
following: [40[1 1][8][161 and [7]. Out approach differs in that it builds on the theory
of an underlying description system [1] and in the fact that it is designed for a
parallel message passing environment in contrast to the sequential coroutine object-
oriented programming languages derived from Simula. Traditional properties of
transactions (e.g., the all or nothing property) can be implemented by actors
following the appropriate message protocols. These actors are called transaction
managers. SharedAccount actors could be implemented as specializations of
transaction managers and thereby acquire the proper message protocol.

If an actor can change its local state, it is called a serialized actor. A serialized
actor accepts only one message at a time for processing: it will not accept another
message for processing until it has dealt with the one which it is processing in at
least a preliminary fashion. A communication received by a serialized actor is
processed in order of arrival

4. MESSAGE PASSING SEMANTICS

Message Passing Semantics takes a different perspective on the meaning of a
sentence from that of truth theoretic semantics. In truth-theoretic semantics, the
menning of J sentence is determined by the models which make it true. For example
the conjunction of two sentences is true exactly when both of its conjuncts are true.
In contrast MAosage Passing Semantics takes the meaning o' a message to be the
eff<ct)7 ha.; on the subsequent behavior ot the system. In other words the meaning
of a message is determined by how it affects the recipients. Each partial meaning of
a message is constructed by a recipient in terms of how it is processed [321. The
mcaning of a message is open ended and unfolds indefinitely far into the future as
other recipients process the message.

At a deep level, understanding always involves categorization, which is a function
of interactional (rather than inherent) properties and the perspective of individual
Viewpoints. Message Passing Semantics differs radically from truth-theoretic
semantics which assumes that it is possible to give an account of truth in itself, free
of interactional issues, and that the theory of meaning will be based on such a theory
of Iruth [241.

5. LIMITATIONS OF DESCRIPTIONS

One of the most challenging problems in the conceptual modeling of Open
Sstems is sorting out the relationship between doing and describing.

130

MESSAGE PASSING SEMANTICS

The distinction between doing and describing is different from the usual distinction
made in the Artificial Intelligence literature [29][13] between the epistemological
adequacy of a system (its accuracy with respect to truth-theoretic semantics [37]
and the heuristic adequacy (the efficiency of its inferential procedures in proving
theorems). Thus the distinction between epistemological adequacy and heuristic
adequacy is founded on the basis of truth-theoretic semantics. Our simple example
can help clarify the distinction. An epistemologically adequate theory of financial
eacr\unts gives an accurate description of the rules that govern them. An
heuristically adequate system can derive theorems in the theory of financial
accounts fast enough to answer queries. Both kinds of adequacy are concerned
with the cisc . :t,- of financial accounts: the former with its accuracy; the later with
the ufficiency with which the description can be used to answer questions.

Neither kind of adequacy actually accomplhshes creating a shared account with a
$10 in it so a growing set of geographically dispersed users can make deposits and
withdrawals. We could aesc ibe a certain kind of account with an axiom such as the
following:
I(d ,)

real .iiiter acceptance

(,
r]

; arL-dAcrour' (with balance b))

.i 1),.('is , (wih arnount d))

i Comolehonfleport

(A,! Plt ngnalance (b + d)))))

where the variables b and d are universally quintfied and the predicate
replies-after-acceptance takes three arguments which are a description of the
local state of an actor when it accepts a request nicsare. a dcscription of the
request accepted, and a description of the reply to the reqtulst rc-,.:ctively. Now it
should be clear that hypothesizing that ACCOUNT43 sabsties the following
description:

(a Si':r-dAccount
(W'T1 er~~{H~ll, O 3)

(,v !h Placel H.,f, o n)'don)

(wth Tme MPdAiqh i)+ce.ier i' it)

does not by itself actually create such an wicount. Indeed the above assertion is
ambiguous between the following interpretations:

" ilypomresis Interpretaon: We have just discovered that 4CCOUNT43
is already such an account and want to explicitly record this in the data
base.

" Goal Interpretation: We want to declare our goal of having
ACCOUNT43 be such an account and we will devote some effort to
establishing the goal.

131

MESSAGE PASSING SEMANTICS

To actually create the account requires actually providing the money for the initial
devosit in the account Making assertions by itself will not suffice. Similarly

asserting the ACCOUNT43 is not a SharedAccount on the other side of the country

does not in itself destroy the account.

A common bug in attempting to model computation in open systems is to assume

that an agent sending messages can determine the order in which they will be seen

by the recipient. It is important to realize that the above assumption is contrary to

the nature of Open Systems. Implementing shared resources inherently involves

being open to outside communications, even those put forth by parties which joined

the Open System after the request being considered was received.

6. TAKING ACTION

,,7owing that somethinq is true arid taking action to make it come true are two

d, 1f,,rent th is Both are mportant and they should not be confused. In this section
we discuss how actors can take action to supplement the previous sections

discussion of hov they can nianpulate descriptions.

Actions such as creating a new shared account with balance $12 and owner Ken

can be pcrtformd by evaluating an expression such as the one below in the
programming language Act2:

(N i (! ,; -r, 2, accouni) $12)
(wi b (Ownts olf PO,os, n) (Ken})))

Bc-low we present part of the implementation of Sharedaccount. This

implementation is written out in "parenthesized English" [22][14][16J[26][38] which
is gradually developing into a technical language. The underlined words have
special technical meanings.

132

MESSAGE PASSING SEMANTICS

(new SharedAccount (with (balance of Account) 0)
(ith' (owners of Possession) s))

to have the following implementation:
(create a new actor w;th the behavior that

after acceptance, select one of the following handlers
for thre communication accepted:
(Iftt L (I]uer (balance Gf Account)) request,

(reply b))
(Iit is (ai Withdrawal (with Amnount w)) request,

(soeed one of the following caves for w*
fitt is Cerss tnan or orqta) to b).
fleoly (a CimoletionReport)) as welt as
(becore (new SnairedlAccount

(wI f- (balance of Account) (b w))

(Ift is~ (greater than b),

(complain (an Overdraft Complaint)))))
(If it is (a Ieoosit (with Amnouint d)) request,

(replv (a Coirpietion Report

(with Resultingi~aiance (b + dl))))
(bPCrune (now SharedlAccount

(with (balaoce of Account) (b +)))
(If it s lqer (ownlers L, Possessir~n() reqluest,

)(cpjy Y))

At this point we would like to take note of several unusual aspects of the above
implementation. By default, commands in the body of a procedure are executed
concurrently. For example, in the communication handler for Withdrawal requests
above, the following two commands are executed concurrently:

lrrujylacompoeoi ppvort))

(beCOMeln ewShai(dAcrcoint(wih(balaince ufAccoirnt((b - w))))

The principle of maximizing concurrency is fundamental to the design of actor
programming languages. It accounts for many of the differences with conventional
languages based on communicating sequential processes. Another example of
maximizing concurrency is that the processing of messages by a serialized actor can
be pipeltned. Serialized actors can be pipelined since processing on a subsequent
message can commence once the hecome command has been executed since it
designates the actor which will process the subsequent message. For example after
accepting a Withdrawal message then executing the following becomeQ command

(becoinefnew~h ared Accn ir t(wt ul'halanceofA ccount)(t w))))

1,33

PROGRAMMING METHODOLOGY

action of the call has aborted (this would happen, for example, if the top action ran at
the crashed guardian), or that some ancestor of the handler call will contain an
appropriate aid, i.e., an ancestor of the call, in its aborts list.

For example, consider the case of the system aborting the call. Recall that in
executing a handler call, the system actually creates two subactions, one, the call
action, at the calling guardian and another, the handler action, at the called
guardian. The call action is a child of the action making the call, and the handler
action is a child of the call action. Two actions are needed so that the call can be
aborted independently at the calling guardian even if the handler action committed
at the called guardian. This detail was suppressed in the action tree shown in Figure
11-1. When the system aborts the call action at the calling guardian, it inserts the aid
of this subaction in the aborts list of its parent. Thus, the aborts list of an ancestor
of the handler action contains an appropriate aid.

2.3. Two-phase Commit

Distributed commitment in Argus is carried out by a standard two-phase commit
protocol [7], [12]. In this protocol, the guardian of the committing top action acts as
the coordinator. The other guardians, namely those in the plist, act as the
participants.

The coordinator sends the abortsjlist to each participant in the prepare message.
When a participant receives a prepare message for sonic top action A, it compares
every descendant of A in its committed with the actions listed in the abortsilist of the
prepare message. If a descendant of A is not also a descendant of some action in
the aborts list, then it is known to have committed to A. In this case. its nlist is used
to cause all new versions created for it to be written to stable storage. If D is a
descendant of some action in the aborts-list. its effects are undone: its olist is used
to cause its locks to be released and its versions discarded. Thus the aborts list is
used at the participant to reconstruct enough of the action tree to determine what to
do with every local descendant of the committing top action.

Actually, sending just the aborts list in the prepare message is not quite enough.
as the following example illustrates. If a guardian crashes after running sonic
handler calls that are subactions of top action A. and then tuns more handler calls
that are subactions of A after it recovers, only the latter calls will he listed in
committed. If a handler call that ran before the crash co-mm itted to tile top. it
versions should be written to stable storage. Since the vcr-ions wt ,, lost in the
crash, the guardian should refuse to prepare. However. qien the information
discussed so far. there is no way that it could know this For e'ample. consider the
action tree of Figure 11.1, and suppose that A.2.1 committed at G3, then G3
crashed. and after G3 recovered A.1.1 ran and committed !here. The ilgorithm

147

PHUGRAMMING METHODOL OGY

olist The list of local atomic objects used by this action and its local
committed descendants

These lists are empty when an action starts. Whenever an action uses an atomic
object, this information is added to its ohst. The other data are modified as
descendants of the action commit or abort. If a local subaction commits, its olist,
pist and abortslist are merged with those of its parent. Also its locks and versions
are propagated to its parent. If the local subaction aborts, its locks and versions are
discarded (using the information in the olist). Since the action is aborting, it is
contributing no participants to its parent, and therefore its plist is discarded. Finally,
the aborting subaction's aid is added to its parent's aborts-list if it may have
committed descendants it other guardians. This will be true if either its plist or its
aborts hst is non-empty, or if it is waiting on a handler call when it aborts.

When a handler call is made, a call message is constructed and sent to the
handler's guardian. Later a reply message is sent from the handler's guardian to the
caller's guardian. This reply message contains a plist and an aborts list, which are
merged with those of the caller. The olist is not sent back in the reply: information
about used objects is kept locally at the guardian that contains the objects.

When the call message is received at the handler's guardian, a subaction is
created for it. with its associated plist, abortslist and olist, all empty. As the handler
action runs, these data are modified as described above. Now let us consider what
happens when the handlcr action completes. First, suppose it commits. In this case
its aid and o/ist are stored in committed at its guardian. Its gid is added to its plist
and then its p/ist and aborts list are sent back to the calling guardian as part of the
reply message. If the handler call aborts, its locks are released. The phst in the reply
message is empty. If the aborting subaction made no remote calls that may have
committed at other guardians (i.e., its p/ist and abortslist are empty), the aborts_/ist
in the reply message is empty; otherwise it contains the aid of the aborting handler
action.

For example. when A.2 in Figure 11-1 commits, its phst wkith its gid added is (G2.
G3. G5) and its aborts ist is empty; this information is sent to G in the reply
message. When A.1 aborts, its phst is non-empty, so the reply message contains
aborts/ist (A.1). When this information is merged at G we end up with the phst and
abortslist discussed earlier.

In the above discussion, we assumed that when th, reply message arrived at the
calling guardian, the caller was waiting for the reply. However. this is not nccesarily
so. The calling guardian may have crashed before the reply arrived, the calling
action may have aborted because of rho termrnatien of a coenter. or the call may
have been timed out by the system because of a network partdion. In all these cases
the reply message is discarded Furthermore. we can be certain that either the top

146

PROGRAMING METHODOLOGY

@G1 No information

@.G2 A.2 committed

@G3 A.1.1 committed
A.2.1 committed

' PG4 A.1 .2 committed

@G5 A.2.2 committed

@G6 No information

Figure 11 -2: Information Stored at Subactions' Guardians.

At the top action's guardian. we remember (in volatile storage) the parts of the tree
that are niot stored at the subactions' guardians. First, there is a data structure
called the plist that lists the participants. Second, there is the aborts ist, which lists
those subactions that aborted but that might have committed descendants at other
guardians. For the action tree in Figure 11 -1, we have

plist = G2. M,. G5)
aborts-list {. A.1)

Notice that the aborts list need not contain aborted subact ions that have no remote
desceccnants (e.g.. A.2.3). because this informiation is (effectively) stored at the
aborted subaction's gqial dan. Notice -il,.o that the atbortslist ocd not contain two
subhact ions wherie one is an ancestor of the other: In such a case only the older of the
two subactions riced be remumbered.

2.2. Constructing the Action Tree

Whilo an action is runninq, the imljermerntationi maintains the following volatile
informiaficr fur it .rt i's guardiain:

plist The list of (juard iais vitiod b', coinmitted dcsceoidants of this
ation, whri f, :1 imneector,, of ttit t,,i.end, of up to this action

have oi (Itc e tith_ dos((idi .,omimitf, d to this aiction).

aborts list Ah i fPr. ~ ris 0 this action tha t may have

Thu~~~~~~ 15)wt(,(o -

PROGRAMMING METHODOLOGY

A@G
active

A.1@Gl A.2@G2
aborted committed

A.1.1 @G3 A.1.2@G4 A.2.1 @G3 A.2.2@G5 A.2.3@G6.

committed committed committed committed aborted

Figure I1 -1 : An Action Tree Just Before Committing of Top Action A.

tree were sent to all participants, then they could determine which of the subactions
that ran locally should have volatile versions written to stable storage, and which
should have their volatile versions discarded. For example, at G3 it would be known
that A.2.1's vol3tflo versions should be written to stable storage, but A.1.1's versions
should be discarded. However, the tree may be large, so we have chosen a different
approach. Rather than building the tree at the top action's guardian as the top
action and its descendants run, we keep parts of the tree at the descendants'
guardians. Some information must still be collected at the top action's guardian, but
the amount of information is reduced.

Before discussing the stored information, it is necessary to say a few words about
action identifiers (aids). The action identifier of a subaction, e.g., A.2.2, contains
within it the guardian identifier (gid) of the guardian at which the subaction ran, e.g.,
G5, and also the aids of all the ancestors of the subaction, e.g., A.2 and
A. Furthermore, given two aids, it is possible to tell whether one is an ancestor of the
other. Thus some of the information in the action tree is stored in the aids.

Figure 8-2 shows the information kept at the guardians where descendants ran for
the action tree shown in Figure 8-1. These guardians remember, in a local, volatile
data structure called committed, those handler subactions that ran at the guardian
and then committed. In addition, for each of these subactions, the guardian
remembers all the atomic objects on which the subaction holds locks. This
information is used to determine what needs to be written to stable storage during
two-phase commit and to release locks. Handler subactions that ran at the guardian
and then aborted are forgotten; these subactions hold no locks (the locks were
released at the time of the abort) and no information need be written to stable
storage for them.

144

PROGRAMMING METHODOLOGY

subactions. Each individual action runs at a single guardian; we will refer to this
guardian as the action's guardian. An action can affect other guardians by means of
handler calls. A distributed computation starts as a top action at some guardian and
spreads to other guardians by means of handler calls, which are performed as

subactions of the calling action. A handler call subaction may make further handler
calls to other guardians; it may also make use of the objects at its own guardian and
thus acquire locks on them and also (if it modifies the objects) cause new volatile
versions to be created. Since these versions are in volatile storage, they will be lost
if their containing guardian crashes before the top action commits. Therefore, when
a top action commits, a distributed commitment procedure must be carried out to
guarantee that the new versions of objects modified by descendants of that action
are copied to stable storage.

In this section, we describe how the distributed transaction system is implemented.
We begin by describing a model of actions that can be used both to discuss how
actions execute, and what happens when actions complete, We use this model to
describe the information that is collected at guardians as the action and its
subactions run, how this information is used during distributed commitment, and
how locks are propagated from one guardian to another,

2.1. Action Trees

A top action and its descendants can be modeled by means of a tree structure
called an action tree. The root of the tree is labeled by the top action; the interior
nodes are labeled by descendant subactions. Only subactions appear below the
root of the tree; a nested top action will be represented by its own tree. Each node of
the tree contains information about the state cf its action (active, committed or

aborted) and the guardian at which the action is rui ining or ran. Figure 11-1 shows a
tree that might exist just before the top action, A, commits.

A subaction is said to have committed to the top if it committed, and so have all its
ancestors up to, but not including, the top action. For example, A.2.1 committed to
the top, but A.1.1 and A.1.2 did not. When a top action commits, it is necessary to
communicate with the guardiahs of all actions that committed to the top. The
guardians are called the participants. We need not communicate with guardians of
actions that did not commit to the top (for example, guardian G4 in the figure), which
is fortunate since such communication may be impossible. For example, the reason
A.1 aborted may have been because a network partition made it i:)possible to
receive the results from G4.

If a top action's tree were known at the top action's guardian when the top action is
about to commit, the information in it could be used to control distributed
commitment. The participants can be computed from the tree, and if, in addition, the

143

PROGRAMMING METHODOLOGY

1. INTRODUCTION

This year, the Programming Methodology Group has continued to study the
structure and execution of distributed programs. As before, our work has focused
on the design and implementation of the Argus language and system, which is being
developed to support the construction and execution of distributed programs.
During the past year, we have completed the design of a preliminary version of
Argus, and have published a reference manual describing this initial language [16].

The implementation of Argus has been a major effort this year. This
implementation is being carried out on a number of Vaxes running Berkeley Unix 4.2
and connected by a local-area net. This year we succeeded in bringing up
guardians in isolation: an individual guardian can now run, including the execution
of top actions and subactions, but it is not yet possible to run a computation that
takes place at many different guardians. In addition, as a first step in supporting
distributed computations, we implemented a communications subsystem that runs
on top of IP [20], and we implemented remote procedure calls on top of this
substrate. Finally, as we implement Argus itself, we are implementing a system for
debugging Argus programs so that as each new feature of Argus is executable,
debugging support for programs using that feature is also available.

In addition to our work on Argus, we are conducting research on a number of
topics in both programming methodology and distributed computing. Julie
Lancaster [131 designed a naming structure for a program development system that
supports version control. Our work in distributed computing includes orphan
detection algorithms, data replication techniques and action debugging [4].

In the following sections we assume some familiarity with Argus; an overview can
be found in [14]. Section 2 provides an overview of the Argus implementation,
focusing on the way that atomic actions are implemented. Section 3 discusses our
orphan detection algorithm, and then describes a method for reducing the cost of
the algorithm. Section 4 includes some issues concerning atomic data types, and
Section 5 describes a new replication method for constructing highly available
distributed objects.

2. IMPLEMENTATION

The Argus implementation includes an operating system kernel that supports
execution and scheduling of guardians and their processes, and also some form of
message communication. In addition, it contains a distributed transaction system,
and a recovery system.

A distributed computation in Argus consists of a top action and all of its

142

PROGRAMMING METHODOLOGY

Academic Staff

B. H. Liskov, Group Leader

Research Staff

P. R. Johnson R. W. Scheifler

Graduate Students

S.-Y. Chiu B. M. Oki
M. P. Herlihy J. P. Restivo
R. Ladin E. F. Walker
J. N. Lancaster W. E. Weihi
G. T. Leavens L. J. Yedwab

Undergraduate Students

N. A. Beardsley A. Della Fera
M. W. Chan C. A. Gosling

Support Staff

A. Rubin

Visitor

Y. Miyashita

MESSAGE PASSING SEMANTICS

36. Steele, G.L., Jr. and Sussman, G.J. "The Revised Report on SCHEME: A
Dialect of LISP," MIT/AI/TM-452, MIT Artificial Intelligence Laboratory,
Cambridge, MA, January 1978.

37. Tarski, A. "The Semantic Conception of Truth," Philosophy and
Phenomenological Research 4, (1944), 341-375.

38. Theriault, D. "A Primer for the Act-1 Language," MIT/Al/TM.672, MIT
Artificial Intelligence Laboratory, Cambridge, MA, April 1982.

39. Turing, A.M. "Computability and @G(1).Def inability," Journal of
Symbolic Logic, 2, (1937), 153-163.

40. Weinreb, D. and Moon, D. "LISP Machine Manual," MIT Artificial
Intelligence Laboratory, Cambridge, MA, March 1981.

140

MESSAGE PASSING SEMANTICS

23. Kahn, K.M. "Intermission - Actors in Prolog," Logic Programmina,
Academic Press, 1982.

24. Lakoff, G. and Johnson, M. Metaphors We Live By, The University of
Chicago Press, Chicago, IL, 1980.

25. Landin, P. "A Correspondence Between ALGOL 60 and Church's
Lambda Notation," Communications of the ACM, 8, 2, (February 1965).

26. Lieberman, H. "A Preview of Act-l", MIT/AI/TR-625, MIT Artificial
Intelligence Laboratory, Cambridge, MA, 1981.

27. Lieberman, H. "Thinking About Lots of Things at Once Without Getting
Confused: Parallelism in Act-i," MIT/AI/TR-626, MIT Artificial
Intellig:)nce Laboratory, Cambridge, MA, 1981.

28. Liskov, B., Snyder, A., Atkinson, R and Schaffert, C. "Abstraction
Mechanism in CLU," Communications of the ACM, 20, 8, (August 1977).

29. McCarthy, J. and Hayes, P.J. "Some Philosophical Problems from the
Standpoint of Artificial Intelligence," Machine Intelligence 4, Edinburgh
University Press, Edinburgh, Scotland, 1969, pp. 463-502.

30. McCarthy, J. LISP 1.5 Programmer's Manual, The MIT Press,
Cambridge, MA, 1962.

31. Milne, R. and Strachey, C. A Theory of Programming Languages, John
Wiley & Sons, New York, NY, 1976.

32. Reddy, M. "The Conduit Metaphor," Metaphor and Thought, Ortony,
A. (ed.), Cambridge University Press, 1979.

33. Reiter, R. "Towards a Logical Reconstruction of Relational Database
Theory," Perspectives on Conceptual Modeling, Springer-Verlag,
Brodie, M.L., Mylopoulos, J.L, and Schmidt, J.W. (eds.). 1982.

34. Shapiro, E. "A Subset of Concurrent Prolog and Its Interpreter,"
ICOT/TR-003, Tokyo, Japan, January 1983.

35. Shaw, M., Wulf, W.A. and London, R.L. "Abstraction and Verification in
Alphard: Defining and Specifying Iteration and Generators,"
Communications of the ACM, 20, 8, (August 1977).

139

MESSAGE PASSING SEMANTICS

12. Friedman, D.P. and Wise, D.S. "The Impact of Applicative Programming
on Multiprocessing," Proceedings of the International Conference on
Parallel Processing, 1976, 263-272.

13. Hayes, P.J. "In Defense of Logic," Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, Cambridge, MA, 1977,
559.565.

14. Hayes-Roth, F., Gorlin, D., Rosenschein, S., Sowizral, H. and Waterman,
D. "Rationale and Motivation for ROSIE," Rand Corporation TR-N-1648-
ARPA, Santa Monica, CA, November 1981.

15. Hewitt, C., Attardi, G. and Lieberman, H. "Specifying and Proving
Properties of Guardians for Distributed Systems," Proceedings of the
Conference on Semantics of Concurrent Computation, Evian, France,
July 1979.

16. Hewitt, C., Attardi, G. and Simi, M. "Knowledge Embedding with a
Description System," Proceedings of the First National Annual
Conference on Artificial Intelligence, August 1980.

17. Hewitt, C. and Baker, H. "Laws for Communicating Parallel Processes,"
1977 IFIP Congress Proceedings, 1977.

18. Hewitt, C.E. "The Apiary Network Architecture for Knowledgeable
Systems," Conference Record of the 1980 LISP Conference, Stanford,
CA, August 1980.

19. Ichbiah, J.D. Reference Manual for the Ada Proaramming Language,
United States Department of Defense, Arlington, VA, November 1980.

20. Ingalls, D. "The Small TAlk-76 Programming System, Design and
Implementation," Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages, Tucson, AZ,
January 1978.

21. Jefferson, D. and Sowizral, H. "Fast Concurrent Simulation Using the
Time Warp Mechanism, Part 1: Local Control," Rand Corporation TR-
N.1906-AF, Santa Monica, CA, December 1982.

22. Kahn, K.M. "Creation of Computer Animation from Story Descriptions,"
MIT, Cambridge, MA, 1979.

138

MESSAGE PASSING SEMANTICS

References

1. Attardi, G. and Simi. M. "Semantics of Inheritance and Attributions in the
Description System Omega," Proceedings of IJCAI 81, Vancouver, B.C.,
Canada, August 1981.

2. Backus, J. "Can Programming be Liberated from the von Neumann
Style? A Functional Style and its Algebra of Programs,"
Communications of the ACM, 21,8, (August 1978), 613-641.

3. Baker, H. and Hewitt, C. "The Incremental Garbage Collection of
Processes," Conference Record of the Conference on Al and
Programming Languages, Rochester, NY, August 1977.

4. Barber, G.R., deJong, S.P. and Hewitt, C. "Semantic Support for Work in
Organizations," Proceedings of IFIP-83, September 1983.

5. Birtwistle, G.M., Dahl, O-J., Myhrhaug, B. and Nygaard, K. Simula Begin,
Van Nostrand Reinhold, New York, NY, 1973.

6. Bobrow, D.G. and Stefik, M.J. "Loops: An Object Oriented
Programming System for Interlisp," Xerox, Palo Alto Research Center,
Palo Alto, CA, 1982.

7. Borgida, A., Mylopoulos, J.L. and Wong, H.K.T. "Generalization as a
Basis for Software Specification," Perspectives on Conceotual
Modeling, Brodie, M.L., Mylopoulos, J.L. and Schmidt, JW (eds.),
Springer-Verlag, 1982.

8. Borning, A.H. and Ingalls, D.H. ""Multiple Inheritance in Smalltalk-80,"
Proceedings of the National Conference on Artificial Intelligence, August
1982.

9. Church, A. "The Calculi of Lambda-Conversion," Annals of Mathematics
Studies Number 6, Princeton University Press, Princeton, NJ, 1941.

10. Clinger, W.D. "Foundations of Actor Semantics," MIT/AI/TR-633, MIT
Artificial Intelligence Laboratory, Cambridge, MA, May 1981.

11. Curry, G., Baer, L., Lipkie, D. and Lee, B. "Traits: An Approach to
Multiple- Inheritance Subclassing," Conference on Office Information
Systems, June 1982.

137

MESSAGE PASSING SEMANTICS

of the above possibilities inherently involves taking any action. The capability to take
action as well as to describe the world is very important. The relationships between
description and action are quite subtle.

We claim that actors (unlike lambda expressions, logical implications, etc.) are the
universal objects of concurrent systems and that they can serve as a efficient
interface between the hardware and software. Actors provide an absolute
conceptual interface between the software and hardware of parallel computer
systems. The function of the hard Mare is to efficiently implement the primitive actors
and the ability to communicate in parallel. Software systems in turn can be
implemented in terms of actors completely independently of the hardware
configuration. The actor concept itself is defined mathematically and is thus
logically independent of all programming languages and hardware architectures. A
system consisting of multiple processors -- called the APIARY -- is being developed
to use the inherent parallelism of actor systems to increase the efficiency of
computation [18].

Message Passing Semantics deals coherently with both doing and describing
whereas truth-theoretic semantics only addresses some of the issues of describing.
We claim that it is impossible to implement shared resources for Open Systems in
description systems such as first order logic and the lambda calculus because they
lack the necessary communication capabilities.

Descriotion languages based on first order logic and/or the lambda calculus have
been designed to express properties but are incapable of taking action. On the
other hand procedural languages (such as current dialects of Lisp and Ada) have
been designed to efficiently take action but they suffer from a lack of descriptive
capabilities. We need good ways to integrate the roles of descriptions and actions in
our systems. Some of the ideas in this report have been applied to the analysis of
the relationship between the roles of descriptions and actions in organizational work
[4].

136

MESSAGE PASSING SEMANTICS

Systems independent agents can incrementally spawn ongoing computations so that
the environment of a computation is not fixed when a computation is begun.

7. RELATED WORK

The object-oriented programming languages (e.g., [5][28][351 and [19]) are built
out of objects (sometimes called "data abstractions") which are completely separate
from the procedures in the language. Similarly the lambda calculus programming
languages (e.g., [30][25][12][2] and [36]) are built on functions and data structures
(viz. lists, arrays, etc.) which are separate. SmallTalk [20] is somewhat a special
case since it simplified Simula by leaving out the procedures entirely, i.e. it has only
classes. The Simula-like languages provide effective support for coroutines but not
for concurrency. In contrast the Actor Model is designed to aid in conceptual
modeling of shared objects in a highly parallel open systems. Actors serve to
provide a unified conceptual basis for functions, data structures, classes,
suspensions, futures, procedure invocations, exception handlers, objects,
procedures, processes, etc. in all of the above programming languages [3][27][15].
For example sending a request communication generalizes the traditiona' orocedure
invocation mechanism which requires that control return to the poini of invocation.
A request communication contains the mail address of a customer to which the
response to the request should be sent as well as the message specifying the task to
be performed. In this way, exception handlers [28][19] and co-routines [5] are
conveniently unified with other more general control structures. The Actor Model
unifies the conceptual basis of the lambda calculus and the object-oriented schools
of programming languages -- being mathematically defined, it is independent of all
programming languages.

The results in this paper are intended to contrast with and further develop the
ideas in [23] and [34]. Both of the above systems are pragmatically useful and
interesting experiments in their own right. Unfortunately, neither as yet has a well
developed mathematical semantics which would make it possible to directly analyze
them as we have done for the lambda calculus and first order logic. To the extent
that Intermission and Concurrent Prolog are based on first order logic and the
lambda calculus, they inherit limitations discussed in this paper.

8. CONCLUSION

The fundamental thesis of this report is that knowing that something is the case
and taking action to make it the case are two different things which should not be
confused. Asserting a proposition P can mean that we have established that P is the
case and want to explicitly record this in the data base. Or it can mean that we want
to declare that P is our goal and we will devote some effort to establishing it. Neither

135

MESSAGE PASSING SEMANTICS

a SharedAccount can then concurrently accept an Account Balance query and
reply with the Completion Report for the Withdrawal request.

An important special case occurs when an actor can never change its local state.
Such an actor is called unserialized and is treated specially so that conceptually it is
able to process arbitrarily many messages at the same time. Actors such as the
square root function and the text of Lincoln's Gettysburg Address are unserialized.

Another unusual aspect is that there are no assignment commands. Effects are
implemented by an actor changing its own local state using a become command
[15]. We model change by actors which change their own local state. Our
conceptual model of change contrasts with the usual computer science notion in
which change is modeled by updating the state components of a universal global
state [31]. The absence of the existence of a well defined global state is a
fundamental difference between the actor model and classical sequential models of
computation [39][9]. Actor systems can perform nondeterministic computations for
which there is no equivalent nondeterministic Turing Machine [10]. The
nonequivalence points up the limitations of attempting to model parallel systems as
nondeterministic sequential machines [311. This is not to say that actor systems can
implement functions which are not recursively computable (like solving the Halting
Problem). Instead the point is that recursive functions do not provide an adequate
model of parallelism, i.e., an Open System cannot be adequately modeled as a
recursive function which maps global states to global states because at any given
point in time an Open System does not in general have a well defined global state.
Will Clinger has developed an elegant mathematical theory (called Actor Theory)
which accounts for capabilities of actor systems which go beyond those of
nondeterministic Turing Machines. We claim that nondeterministic Turing machines
are an unsatisfactory model of the computational capabilities of large-scale open
systems.

Concurrency in Open Systems stems from the parallel operation of an
incrementally growing number of multiple, independent, communicating agents.
Sites can join an Open system in the course of its normal operation -- sometimes
even affecting the results of computations initiated before they joined. Actor Theory
has been designed to accurately model the computational properties of Open
Systems. It is a consequence of the Actor Model that purely functional programming
languages based on the lambda calculus cannot implement shared accounts in
Open Systems. The technique promoted by Strachey and Milne [31] for simulating
some kinds of parallelism in the lambda calculus using continuations does not apply
to Open Systems. The lambda calculus simulation is sequential whereas Open
Systems are inherently parallel. Concurrency in the lambda calculus stems from the
concurrent reduction/evaluation of various parts of a single lambda expression with
an environment which is fixed when the lambda expression is created. In Open

134

PROGRAMMING METHOD)LOGY

discussed above will erroneously) prepare in this case. Such a situation is not a
problem for us because a* orphan detection, which is described in Section 3.

2.4. Lock Propagation

Our lock propagation rule specifies that when a subaction commits, its locks and
versions are propagated to its parent; when it aborts, its locks and versions are
discarded. Propagation of an object's locks and versions is always performed at the
object's guardian. In addition, we carry out this propagation immediately only for
local actions. For example, when a handler action commits, we do not propagate its
locks and versions to its parent, nor do we communicate with the guardians of its
non-local descendants to cause the appropriate propagation of locks for their local
objects. In this way we avoid the delays that such communication would cause; only
when top actions commit is this communication necessary.

Since communication only happens when top actions commit, certain problems
can arise. For example, consider the action tree in Figure 11-1. How does guardian
G4 discover that the locks held by A.1.2 should be released? A related problem may
occur at G3. Suppose that A.1.1 and A.2.1 modify the same object, X. Suppose
further that A.1 and A.2 are actually running concurrently, so that it is possible that
either A.1.1 or A.2.1 may get to G3 first. If A.1.1 modified X first, then before A.2.1
can use X, we must discard A.1 .1's lock and version of X. To do this, we must learn at
G3 about the abort of A.1. Alternatively, if A.2.1 modified X first, then before A.1.1
can use it we must learn about the commit of A.2, and propagate the lock and
version of X to A. Only then can A.1.1 use X.

We solve problems like these by means of lock propagation queries. As mentioned
earlier, when a handler call commits, we continue to keep all its used objects locked
on its behalf. If later some other action wants to use the locked object, the object's
guardian will send a query to determine the fate of the handler action that holds the
lock. Such a query will be sent to a guardian at which an ancestor of the handler
action ran. Recall that the aid of a subaction can be used to determine the aids of
the ancestors of the subaction and thus the guardians of the ancestors.

In the following, we discuss two actions. H and R. H is a committed handler action
that holds a lock on some object. R is an active action that wants to acquire a lock
on that object. H and R's guardian will send a query to some other guardian. That
other guardian will respond with a query response telling what it knows, and H and
R's guardian will then act on that information.

There are two situations to consider, depending on whether H is related to R or
not. If H and R are not related, then H's lock can be broken only if H did not commit
to the top or H's top action. T, aborted, A good place to send the query is to T's
guardian. GT. There are the following possibilities at GT:

VB8

PROGRAMMING METHODOLOGY

1) T is not known at GT, and the query response so indicates. There are
two possibilities here: T aborted, or T committed but two-phase commit
is finished. In the latter case, if H committed to the top, its guardian will
have already discarded its locks and made its versions the current
versions. and the query response will be ignored. If H still holds locks
when the query response is received, its locks will be released and its
versions discarded.

2) T is in the second phase of two phase commit. Again, there are two
possibilities: either H's guardian is not a participant, or it is. If H's
guardian is a participant, it will either be in phase 2 or finished with two
phase commit for T when the query response arrives, and will ignore the
response; otherwise, it will discard H's locks and versions.

3) If T is active or in phase 1, but H is a descendant of some action in T's
aborts-list, then the query response can indicate that some ancestor of
H aborted. In this case H's locks and versions can be discarded.

4) If T is in phase 1, but H is not a descendant of some action in the
aborts-list, then we can discard the query, since H's guardian is about to
receive appropriate information anyway as part of two-phase commit.

5) If T is active and H is not a descendant of some action in the aborts-list,
then the query cannot be resolved yet. In this case, H's guardian cannot
release H's locks; it can query to GT again later, or it could query to
guardians of other ancestors of H to try to discover if some ancestor of H
aborted. This additional querying is useful only if an ancestor of H is
active at some other guardian; such information can be included in the
query response.

For example, suppose that A.1.1 of Figure 11-1 is the holder, and the requester, R,

is a non-relative. The query would be sent to G. If G knows nothing about A, or is in
phase two for A, or A is active or in phase 1 but A.1 appears in the aborts-list, then
G3 can be told to release A.1.1's lock. (In fact, all of A.l.l's locks will be released
and its versions discarded at this point.) The only other possibility for this action tree
is that A.1 is still active; in this case G3 might try a query to G1.

The second situation is when H and R are related. In this case we are interested in
an ancestor of H and R called the least common ancestor (the LCA). The LCA is the
action that is an ancestor of both H and R, and that is younger than all other
ancestors of H arid R. For example. for the action tree of Figure 11-1, A.2 is the LCA
of A.2.1 and A.2.2, while A is the LCA of A.1.2 and A.2.2. To satisfy R's request for
the object, we must learn whether or not H committed to the LCA. If H did commit to

149

PP')GRAMMING METHODOLOGY

the LCA, its locks and versions can be propagated to the LCA and then R can obtain
its needed lock. Notice that in this case R will observe any modifications made by
H. The other cases are described below.

So, when H and R are related, a query is sent to the LCA's guardian. There are the
following possibilities:

1) If the LCA is active and H is a descendant of some action in its
aborts list, then the query response can indicate that some ancestor of
H aborted. In this case, H's locks and versions can be discarded, and
then R can obtain its needed lock.

2) If the LCA is active, H is not a descendant of an action in the aborts-list,
and the handler call that gave rise to H has completed, then the query
response can indicate that H did commit to the LCA. In this case, H's
locks and versions can be propagated to the LCA and then R can
acquire the needed lock.

3) If the LCA is active and the handler call that gave rise to H is still active,
then the query cannot be resolved at the LCA's guardian. In this case
H's guardian may query to other guardians where ancestors of H are
running.

4) Otherwise, the LCA is no longer active at its guardian. In this case, the
fate of H is not known at the LCA's guardian, but R is an orphan. We will
discuss orphans in the next section. When H's guardian receives this
response, it will leave H's locks and versions intact, but destroy R as
discussed below.

It is worth noting that queries are the glue that holds the system together. For
example, when a handler action aborts, we may choose to notify guardians where
descendants committed about the abort, but this is strictly an optimization to avoid
queries later. We do not need to communicate before the reply message for the
aborting handler is sent to its caller, so we incur no delay in the processing of
actions. Instead we can communicate when it is convenient, for example when the
handler's guardian is not doing anything. Furthermore, we need not try very hard to
communicate, since if a message is lost, the information can always be obtained by a
query.

150

PROGRAMMING METHODOLOGY

3. ORPHANS

An orphan is any active action whose results are no longer wanted (see also [19]).
Orphans arise from two different sources: explicit aborts and crashes. Let us
consider the case of explicit aborts first. One way aborts happen is when the system
determines that a handler call cannot be completed right now. As mentioned above,
a handler call causes two subactions to be created, and the call action will commit
only after it has received the handler's reply and extracted the results from that reply
message. This can occur only if the handler action has actually finished and either
committed or aborted. On the other hand, the call action can ahort without receiving
a reply from the handler, and in this case the handler action (or bome descendant of
it) m-y still be running as an orphan.

Aborts also happen when an arm of a coenter exits the coenter and causes other
arms to abort. The local subactions that correspond to these other arms will be
terminated when this occurs, but if any of those arms is waiting for a handler call to
complete, we abort the call action immediately and may leave an orphan at some
other guardian.

The second way orphans arise is due to crashes. For example, the guardian
making a call may crash, leaving the handler action as an orphan. Another
possibility is the following: Suppose subaction S running at guardian GS made a call
to guardian GC. Suppose this call committed. but subsequently GC crashed. In this
case S must ultimately abort, because it depends on information at GC that has now
been lost. Therefore, S is an orphan.

Since S is an orphan, it cannot commit and therefore none of its changes will
become visible to other actions. Nevertheless, orphans are bad for two reasons,
Since their results are not wanted, they are wasting resources. For example, some
other action may be delayed because an orphan holds a needed lock. In addition,
because they depend on locks that have been broken (for example, S depends on
locks acquired by the handler call to GO), there is a danger that they may observe
inconsistent data. Such inconsistent data can cause a program that behaves
reasonably when the data is consistent to behave strangely; for example, a program
that would ordinarily terminate may loop forever. In addition, if the program is
interacting with a user, it may display inconsistent data to the user.

To illustrate this problem of inconsistent data, consider the following example.
Suppose guardian Y replicates the data stored at another guardian X. The
consistency constraint between each object x at X and its replica y at Y is that x = y.
Now consider the scenario shown in Figure 11-3: First suppose that top action S
makes a call, S.1, to guardian X. S.1 reads x, thus obtaining a read lock on x,
displays the value of x to a user at a console, and then commits. Next X crashes and
subsequently recovers; however, S.t's lock on x has been lost. Then another top

151

PROGRAMMI;G METHODOLOGY

action T makes a call to X; this call, T.1, changes the value of x to x + 1 and
commits. Next T makes a call T.2 to Y, which changes y to y + 1 (thus preserving
the invariant) and commits. Finally T commits, so the locks on x and y held by its
descendants are released, and x and y take on their new values. Now S makes a call
S.2 to Y, which reads the new value of y and displays this value to the user at the
console. The new value of y is different from the value of x displayed previously, so
the user has seen inconsistent data.

S @ Gs: T @ GT:

S.A @ X:
display x to user
commit

X crashes and recovers

T.1 @ X:
x:= x +

commit

T.2 @ Y:
y:= y +
commit

T commits

S.2 @ Y:
display y to a user

Figure 11 -3: An Orphan Scenario.

In Argus, we guarantee to eliminate orphans quickly enough that an orphan can
never observe data in a state that could not be observed by a non-orphan. As a
rcsult of this guarantee, it is not necessary to worry about orphans when writing
Atgus programs. For example, the programmer need not be concerned that a
program might expose inconsistencies of the sort discussed above to the user.

Our method of detecting orphans is to send extra information in some of the
messages that guardians use to communicate, namely, call and reply messages,
prepare messages, and queries and query responses. We also keep extra
information at each guardian. First each guardian has a crash count; this is a stable
counter that is incremented after each crash. In addition, the guardian maintains

152

PROGRAMMING METHODOLOGY

two stable data structures: done and map. Done lists all actions known to this
guardian that may have orphans somewhere. Like the aborts list, it is not necessary
to keep two actions in done where one is an ancestor of the other; instead only the
older of the two actions need be kept. Map lists all guardians known to this guardian
and their latest known crash counts.

In each message we include done and map of the sending guardian, and, in
addition, the dlist, which lists the guardians depended on by the action on wrose
behalf the message is being sent. Intuitively, an action depends on a guardian if a
crash of that guardian would cause it to become an orphan. The guardians an
action depends on can be computed from information in plists: An action depends
on all the guardians in its plist, but it also depends on all guardians listed in plists of
all its ancestors at the time it was created. The dlist is maintained for each running
action (along with the plist, etc.).

The information in a message is used at the receiving guardian to detect and
destroy any local orphans and possibly to reject the incoming message; it is also
merged with local information to bring that information more up to date. For
example, a call message, C, is processed as follows:

1) We check for any action running at the receiving guardian that is a
descendant of an action in C's done, or that depends on a guardian
whose crash count in C's map is higher than what is known locally.
Such an action is an orphan. These orphans are destroyed before the
call message is acted upon.

2) We check that the call itself is not being performed on behalf of an
orphan. The call is an orphan if its aid is a descendant of some action in
the local done, or if any guardian in C's dlist has a lower crash count in
C's map than in the local map. If the call action is an orphan, we send
back a special reply rejecting the call.

3) Otherwise, we merge C's map and done with the local map and done
and then run the handler action. In merging the maps, if the two maps
disagree about the crash count of a guardian, the higher crash count is
retained.

Orphan detection will prevent the problem illustrated by the scenario in Figure
11-3. When subaction T. 1 of T runs at X, X has a higher crash count than it did when
subaction S.1 ran there. This information is propagated to GT in the reply message
of T.A, and then to Y in the call of T.2. The new information about X's crash count
will then be recorded in Y's map. Later, when the call of S.2 arrives at Y, it will be
rejected because the map sent in this call will contain the old crash count for X.

PROGRAMMING METHODOLOGY

Notice that the information in the map is just what is needed to correct the problem
in two-phase commit mentioned earlier. For example, consider the situation
discussed earlier, in which A.2.1 committed, then G3 crashod and recovered, and
later A.1.1 arrived. There are two possibilities. If A.1 and A.2 are sequential (in
which case A.2 actually ran before A.1), then A.1 depends on G3; the map in the call
message for A.1 will list G3's old crash count, so the call will be rejected by G3 as
an orphan. Another possibility is that A.1 and A.2 are concurrent. In this case,
whichever one commits to A first indicates one crash count for G3, while the second
one to commit to A indicates a different crash count for G3. In either case, when the
second one commits to A, A will be recognized as an orphan and aborted; two-phase
commit will not be carried out.

In the above, we discussed how orphans are detected, but simply assumed that it
was a simple matter to destroy an orphan. In fact, orphan destruction is not too
difficult in Argus. Any process within a guardian can be destroyed without impact on
the guardian's data provided that it is not in a critical section. Since the action of the
process aborts, this ensures that any modifications to atomic objects are undone.
(Note that we do rely on actions sharing only atomic objects; this restriction is
needed if the actions are to be atomic.)

Argus processes enter critical sections in two ways: explicitly, by gaining
possession of special built-in objects called mutex objects, which are similar to
semaphores, and implicitly, by executing some system code that runs in a critical
section. For example, the operations on the built-in atomic objects run in a critical
section while examining the current status of the object (whether it is locked on
behalf of some action). We keep track for each process of whether or not it is in a
critical section. If it is not, we can destroy it immediately and abort its action. If it is,
we let it run until it exits its critical sections. If it does not exit its critical sections, we
can always crash the guardian as a last resort.

3.1. Optimization of the Orphan Detection Algorithm

The practicality of orphan detection depends primarily on the amount of
information that need be sent in messages. Both map and done are potentially very
large, but it is possible to limit the information that need be sent. Below we describe
a technique developed by Walker [22] for reducing the sizes of both map and done.
We describe how the scheme works for done, and then discuss how it can be used
for map.

In this scheme, every action is assigned a done-deadline. This deadline is created
whenever a top action is created; a subaction inherits the done-deadline of its
parent. The deadline is some time in the future, e.g., several hours after the top
action was created according to the clock of the creating guardian.

154

PROGRAMMING METHODOLOGY

All guardians guarantee that the the top action and all its descendants will be
destroyed as soon as the done-deadline is reached. Since no descendants of an
action continue to run once the deadline is passed, it is not necessary to keep an
action identifier in done once that action's deadline has passed. Thus, the length of
time an action identifier remains in done is limited.

Of course, it is not possible for all guardians to recognize that descendants of an
action have passed their deadlines at exactly the same instant, since the clocks at
different nodes cannot be exactly the same. However, we can accommodate clock
skew provided that some upper bound on the maximum deviation of different
guardians' clocks can be defined. Thus we require that clocks be loosely
synchronized. It is not difficult with today's technology to synchronize clocks to
within a few minutes of one another, even in a large system [17].

The actual algorithm takes clock skew into account. When a guardian discovers
an orphan based on comparing the orphan's done-deadline with its local clock, it
destroys the orphan. However, it does not remove action identifiers from done the
instant their deadline is passed. Instead, action identifiers are removed from done
only after

D + epsilon

where D is the action done-deadline and epsilon is the maximum clock skew.

One problem with the above algorithm is that it is difficult to define a reasonable
deadline when an action is created. If the deadline chosen is very large, then action
identifiers of descendants of the action must remain in done a very long time. On the
other hand, if the deadline is small, some action might be aborted just because its
deadline passed, even though it is not an orphan. To provide a more flexible
scheme, Walker describes a method of extending deadlines. (A similar method is
described in [11].) Shortly before an action is due to expire because of its deadline,
its guardian can query to determine whether the action's deadline can be extended.
The response to this query indicates either that the action is an orphan or contains a
new deadline. In the latter case, the new deadline replaces the old deadline and the
action continues to run.

The deadline scheme can also be applied to the map. In this scheme, there is a
system-wide map deadline-interval. Whenever a guardian recovers from a crash, it is
entered in the local map with its new crash count, and a map-deadline equal to its
current time plus the deadline-interval. In addition, when a top action is created it is
assigned a map-deadline in addition to the done-deadline. The map-deadline is
equal to its guardian's current time plus the deadline-interval. The map-deadline,
like the done-deadline, is sent in all messages concerning the action, so all
guardians at which descendants of the action run know the action's map-deadline.

155

PROGRAMMING METHODOLOGY

Whenever a guardian detects that an action running locally is past its map-
deadline, it destroys the action. Therefore, the system guarantees that no
descendants of an action run past the map-deadline, modulo the clock skew.

Since no actions run past their map-deadlines, it is necessary to retain an entry in

map only until

D + epsilon

where D is the entry's mao-deadline and epsilon is the maximum clock skew. This
scheme works for the following reason. Suppose some guardian G creates a top
action A with map-deadline DA and then crashes. Note that all descendants of A
become orphans because of the crash. Subsequently G recovers and is entered in
the map with some map-deadline D. No matter how quickly G recovers, it recovers
after the creation of A, so

DA < D

Therefore, the entry for the crashed guardian will remain in the map long enough to
permit detection of descendants of A as orphans. Notice that the map will be
propagated just as in the unoptimized algorithm. If the map containing the new
crash count for D happens to reach a guardian at which a descendant of A is
running, the entry for D will still be stored explicitly in the map because DA < D.

Just as was the case with the done-deadline, it is possible to extend an action's
map-deadline. However, if crashes are rare the map-interval can be very large
without having map be large. Therefore, it is probably sufficient to have a large map-
interval and not extend the map-deadline.

Done-deadlines for actions can be chosen independently at each guardian.
However, such flexibility does not exist for the map-interval. For example, consider
the situation shown in Figure 11-4. Here top action A was created at G. Its
descendant A.1 was running at H, and A.1's descendant A.1.1 was running at I at the
time H crashed. When H recovers, it must be entered in the map with a map-
deadline greater than the map-deadline of A.1.1. The only way to guarantee this is to
have H's map-interval be at least as big as G's. This requirement poses a problem if
there is ever a need to change the map-interval. It is possible to increase the map-
interval and have the change propagated incrementally throughout the system, but
decreasing the map-interval is much more difficult.

It is too early to predict how well the deadline schemne will work. Walker performed
an analysis (see [22]) that indicated the scheme will work well under "typical"
system load. This analysis is based on assumptions about what a typical load is, for
example, how often guardians create top actions and how often aborts happen. If
these assumptions are correct, then the scheme will be successful. However, since

156

PROGRAMMING METHODOLOGY

G H

Figure 11-4: An Orphan Example.

the Argus implementation is not yet finished, it is too early for us to validate the
assumptions. This will be possible only when statistics can be collected about the
actual use of Argus.

4. SPECIFICATION AND IMPLEMENTATION OF ATOMIC TYPES

An atomic data type, like a regular abstract data iype [15], provides a set of objects
and a set of operations. An atomic type is an abstraction, and hence is described by
a specification: it may be implemented by a program. As with regular abstract types,
the operations provided by an atomic type are the only way to access or manipulate
the objects of the type. Unlike regular types, however, an atomic type provides
serializability and recoverability for activities that use obiects of the type. Argus
provides a number of built-in atomic types, anu in addition provides facilities that
permit users to implement new atomic types (see [24]).

Weihl [23] studied the problems of specifying and implementing atomic data types.
In particular. he addressed three fundamental questions:

" Wh-it is an atomic type?
We need a precise characterization of the behavior of atomic types. For
example, we need to know how much concurrency can be allowed by an
atomic type.

" How do we specify an atomic type?
What aspects of the type's behavior must appear in the speification of
an atomic type, and how should the specification be structured?

" How do we impi ent an atomic type?
What problems st be solved in implementing an atomic type, and
what kinds of pfragramming language constructs make this task simpler?.

To answer the first two questions existing work on concurrency control (or
serializability) was generalized in three ways:

o The definition of atomicity is data dependent: It is based on an explicit
specification of the desired behavior for the data types shared by

157

PROGRAMMING METHODOLOGY

activities. This is crucial in achieving the concurrency required by
applications.

" The definition of atomicity is integrated: Both serializability and
recoverability are treated. This facilitates the description and
verification of implementations of atomic types, which necessarily must
cope with both.

" The focus is on modularity issues: Local properties of individual objects
that ensure atomicity of activities are identified, and conditions under
which different kinds of objects can be combined in a single system
while preserving atomicity of activities are described.

Weihl explored three local properties, each of which is optimal: No strictly weaker
local property suffices to ensure atomicity. The three properties characterize
respectively the behavior of three classes of protocols: two-phase locking protocols
(e.g., see [61, [18]), in which the serialization order of activities is determined by the
order in which they access objects; multi-version timestamp-based protocols (e.g.,
see [21]), in which the serialization order of activities is determined by a pre-
determined total order; and hybrid protocols (e.g., see [1], [31, [5]), which use a
combination of these techniques.

Weihl also presented a novel locking protocol and verified its correctness. His
protocol generalizes previously existing protocols in two ways: First, it permits the
results of operations, as well as their arguments, to be used in determining the
appropriate lock mode. This extra information can be used to allow greater
concurrency. Second, the protocol handles partial and non-deterministic
operations. It thus has a wider range of application than previously existing
protocols, which require operations to be both total and deterministic. In addition,
the implementation of both synchronization and recovery are described and verified;
descriptions of previously existing protocols are limited to synchronization alone.

Weihl's approach to specifying atomic types permits the programmer of an
individual activity to ignore how atomicity is achieved. To reason about whether an
individual activity preserves consistency, one needs only the serial specification of
each type used by the activity, and the knowledge that activities are atomic; one
need not know how types cooperate to ensure atomicity.

In addition, Weihl's specification framework supports an approach that permits the
concurrent specification of a type to be derived systematically from a specification of
its sequential behavior. Thus, the problem of specifying a type is reduced to the
simpler problem of specifying how it should behave in the absence of concurrency.

Finally, several example implementations of atomic types are presented in [23],

158

PROGRAMMING METHODOLOGY

illustrating how existing techniques for synchronization and recovery can be
extended to use information about the specifications of objects to increase
concurroncy. Linguistic support for atomic types is also explored through an
analysis of the advantages and disadvantages of several alternative approaches.

In the remainder of this section we describe informally one of the local atomicity
properties explored by Weihl, and discuss how it relates to two-phase locking
protocols.

4.1. Description of Dynamic Atomicity

Atomic activities are characterized by two properties: serializability and
recoverability. Serializability means that the concurrent execution of a group of
activities is equivalent to some serial execution of the same activities. Recoverability
means that each activity appears to be all-or-nothing: Either it executes successfully
to completion (in which case we say that it commits), or it has no effect on data
shared with other activities (in which case we say that it aborts).

The problem in defining a local property of objects that ensures global atomicity of
activities is illustrated by the following example. Consider a system containing two
objects, x and y, each with read and write operations, and cach with initial value 0.
Suppose that x is implemented using two-phase locking, and y is implemented using
multi-version timestamping. Now suppose there are two activities a and b, with
timestamps 1 and 2, respectively. Consider the following execution:

b reads x, receiving 0.
b writes 1 into y.
b commits.
a reads y, receiving 0.
a writes 1 into x.
a commits.

This execution is not seriaiizable: In a serial execution, the second activity should
see the value written by the first, but both a and b read the initial values of one of the
objects. However, the execution is atomic at each object: At x, b is serializable
before a, and at y, a is serializable before b. In a sense we have an agreement
problem: For activities to be atomic, the objects in the system must agree on at least
one serialization order for the committed activities. In this case x and y do not agree
on a serialization order for a and b, and atomicity is violated. Achieving agreement
can be difficult because each object is aware of only the events in which it
participates. In other words, each object has purely local information; no object has
complete information about the global computation of the system. One can imagine
building a system in which objects have more global information; however, such an
organization suffers from lack of modularity.

159

PROGRAMMING METHODOLOGY

The reason that x and y do not agree on a serialization order in this example is that
they use incompatible protocols to ensure atomicity. If both objects used two-phase
locking, or both used multi-version timestamping, the above execution could not
occur and atomicity would be guaranteed. Our goal in defining a local atomicity
property is to ensure that activities are atomic whenever all objects shared by the
activities satisfy the local atomicity property. Note that any such local atomicity
property must be satisfied by at most one of the objects x and y. The property
dynamic atomicity, described below, ensures global atomicity by ruling out objects
like y while allowing objects like x.

Dynamic atomicity characterizes the behavior of objects implemented with
protocols like two-phase locking, in which the serialization order of activities is
determined dynamically based on the order in which activities access objects. The
essence of such protocols is the notion of delay: If the steps executed by one
activity conflict with the steps executed by another activity, then one of the activities
must be delayed until the other has committed. As discussed in [23], an
implementation of dynamic atomicity need not actually delay activities to achieve this
effect. All that is necessary is that the overall effect for committed activities be as if
conflicts were resolved by delays. Indeed, most optimistic protocols (e.g., see [101)
resolve conflicts by aborting some activities when they try to commit, but the overall
effect is as required by dynamic atomicity.

Weihl captures this notion of delay more precisely as follows: Given an execution
h, define the relation precedes(h) to contain all pairs <a, b> (where a and b are
activities) such that some operation invoked by b in h terminates after a commits in
h,

1

We can illustrate this notion by means of example executions. In the examples,
suppose x is a set object with two operations, insert (to insert a new element) and
member (to determine whether a given element is in x). In example executions,
events are denoted by triples, indicating the type of the event, the object at which it
occurred, and the activity involved. Thus. for example, the triple (insert(2),x,a>
denotes the invocation of the insert operation with argument 2 at object x by activity
a. Similarly, the triple <ok,x.a) denotes the termination, with result "ok," of an
operation invoked by a on x.

Now let h be the following execution:

1Note that there is a distinction between an activity completing by committing or aborting. and an
operation terminating by returning information. An activity may execute any number of operations
before completing. In addition, it is possible for b to commit after a in h, yet for all of b's operations to
tertonate before a commits: in this case the pair <ab) is not in precedes(h).

160

PROGR AMMING MET iIODOLOGY

(insert(2),x~a)
(ok,x,a>

Krnember(3),x.b)
(false,x,b)

<commit,x,b>
(commit,x~a>

Then precedes(h) is the empty relation (no operation invoked by a or b terminates
after the other activity commits). However, if h is the execution

<insert(2),x,a>
(ok,x,a>

<member(3),x,b>
<commit,x,a)
(false,x,b>

<commit,x,b>
then precedes(h) contains the pair (ab>.

The relation precedes(h) captures our intuitive notion of delay: If b is delayed until
after a commits in an execution h, then <atb> will be in precedes(h). Thus, if two
committed activities conflict, dynamic atomicity requires one of them to "precede"
the other. Turning this statement around, if neither (atb> nor (ba> is in precedes(h),
then a -4nd b must not conflict in h. In other words, they must be serializable in the
order a followed by b (written a-b) and in the order b-a. 21r1 general, dynamic
atomnicity requires all executions h permitted by an object to satisfy the following
property: The committed activities in h must be serializable in all total orders
consistent with precedes(h). 3

For example, the following execution h is atomic, but does not satisfy the
requirements for dynamic atomicity:

2
, erjal iaity is jitInod withI ri-sprec to the spccification sof ihe objects involved A hislor yIi can

he e,, r ali: 'd in ,i r~ivn on ler if the specificat ions of the ohjec Is Pernmit the activities in i, to be

-c uted serially in that ordler so ihat they invoke the same opratjons as in h and receive the same

r so its

"IA-, noted in 1221] nsituri r- Iric lions on e" c jlen qi an e thai the "Precedes' relalion is a

pxiiIui order. -n-.-iriii that lh,0 ire total on ler,, coesriet with it

161

PROGRAMMING METHODOLOGY

Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, March 1984.

Theses in Progress

1. Chiu, S-Y. "Debugging Distributed Computations in a Nested Atomic
Action System," Ph.D dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected January
1985.

2. Restivo, J. P. "Addition of Type Information to the Argus Debugger,"
SM. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected June 1985.

Talks

1. Chiu, S-Y, "Debugging Distributed Computations in a Nested Atomic
Action System,"

DEC Systems Research Center, Palo Alto, CA, May 1984
Xerox PARC, Palo Alto, CA, May 1984
IBM Research Laboratory. San Jose, CA, May 1984
Hewlett-Packard Laboratories, Palo Alto, CA, May 1984

2. Herlihy, M. P. "Replication Methods for Abstract Data Types"

Harvard University, Cambridge, MA, February 1984
Xcrox PARC. Palo Alto, CA, March 1984
DEC Systems Research Center, Palo Alto, CA, March 1984
Stanford University, Palo Alto, CA, March 1984
SRI International, Menlo Park, CA, March 1984
University of California at Berkeley, Berkeley, CA,

March 1984
Carnegie Mollon University, Pittsburgh, PA, March 1984
MIT, Cambridge, MA, April 1984
DEC Corporate Research, Hudson, MA, April 1984

3. Herlihy, M. P. "Issues in Process and Communication Structure for
Distributed Programs," The Third IEEE Symposium on Rcliability in
Distributed Software and Database Systems. October 1983.

4. Liskov. B. H. "Argus: The Programming Language and System,"
Xerox PARC. Palo Alto. CA, August 1983
Cornell University, Ithaca, NY, November 10, 1983
Brown University, Providence, RI, May 1, 1984

175

PROGRAMMING METHODOLOGY

8. Weihl, W. E. "Data-Dependent Concurrency Control and Recovery,"
Proceedings of the Second Annual ACM Symposium on Principles of
Distributed Computing, Montreal, Canada, 63-75, August 1983.

9. Weihl, W. E. "Specification and Implementation of Atomic Data Types,"
MIT/LCS/TR-314, MIT Laboratory for Computer Science, Cambridge,
MA, March 1984.

10. Weihl, W. E. and Liskov, B. "Implementation of Resilient, Atomic Data
Types," to appear in ACM Transactions on Programming Languages
and Systems.

Theses Completed

1. Beardsley, N. A. "An Algorithm for Compile-Time Detection of
Uninitialized Variables in CLU," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA, May 1984.

2. Chan. M. W. "Evaluation of Argus Through the Implementation of a
Distributed Calendar System," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

3. Della Fera, A. "SCOPE, A System for CLU Object Perusal and Editing,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

4. Gosling, C. "A Catalog for the Argus System," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

5. Herlihy. M. P. "Replication Methods for Abstract Data Types," Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge. MA, May 1984.

6. Lancaster. J. N. "Naming in a Programming Support Environment," S.M.
thesis. MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA. August 1983.

7. Walker, E. F. "Orphan Detection in the Argus System," SM. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

8. Weihl, W. E. "Specification and Implementation of Atomic Data Types,"

174

PROGRAMMING METHODOLOGY

22. Walker, E. F. "Orphan Detection in the Argus System," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

23. Weihl, W. E. "Specification and Implementation of Atomic Data Types,"
MIT/LCS/TR-314, MIT Laboratory for Computer Science, Cambridge,
MA, March 1984.

24. Weihl, W. and Liskov, B. "Implementation of Resilient, Atomic Data
Types," To appear in ACM Transactions on Programming Languages
and Systems.

Publications

1. Dolev, D., Lynch, N. A., Pinter, S., Stark, E. W. and Weihl,
W. E. "Reaching Approximate Agreement in the Presence of Faults."
Proceedings of the Third IEEE Symposium on Reliability in Distributed
Software and Database Systems, October 1983.

2. Herlihy, M. P. "Replication Methods for Abstract Data Types,"
MIT/LCS/TR-319, MIT Laboratory for Computer Science, Cambridge,
MA, May 1984.

3. Lancaster, J. N. "Naming in a Programming Support Environment,"
MIT/LCS/TR-312, MIT Laboratory for Computer Science, Cambridge,
MA, 1983.

4. Liskov, B. "Overview of the Argus Language and System," Programming
Methodology Group Memo 40, MIT Laboratory for Computer Science,
Cambridge, MA, February 1984.

5. Liskov. B. and Herlihy, M. P. "Issues in Process and Communication
Structure for Distributed Programs." Programming Methodology Group
Memo 38, MIT Laboratory for Computer Science. Cambridge, MA, July
1983. Also Proceedings of the Third Symposium on Reliability in
Distributed Software and Database Systems, October 1983.

6. Liskov. B. and Scheifler, R. "Guardians and Actions: Linguistic Support
for Robust Distributed Programs." AG'M Transactions on Programming
Languages and Systems 5. 3 (July 1983), 381-404.

7. Liskov, B.. et al. "Preliminary Argus Reference Manual," Programming
Methodology Group Memo 39. MIT Laboratory for Computer Science,
Cambridge. MA, October 1983.

173

PROGRAMMING METHODOLOGY

11. Lampson, B. "Applications and Protocols." Distributed Systems:
Architecture and Implementation, Lecture Notes in Computer Science
105, Goos and Hartmanis (eds.), Springer-Verlag, Berlin, 1981.

12. Lampson, B. "Atomic Transactions," Distributed Systems: Architecture
and Implementation, Lecture Notes in Computer Science 105, Goos and
Hartmanis (eds.), Springer-Verlag, Berlin, 1981.

13. Lancaster, J. N. "Naming in a Programming Support Environment,"
MIT/LCS/TR-312, MIT Laboratory for Computer Science, Cambridge,
MA, 1983.

14. Liskov, B. "Overview of the Argus Language and System," Programming
Methodology Group Memo 40, MIT Laboratory for Computer Science,
Cambridge, MA, February 1984.

15. Liskov, B. and Zilles, S. "Programming with Abstract Data Types,"
Proceedings of ACM SIGPLAN Conference on Very High Level
Languages, SIGPLAN Notices 9, 4 (April 1974), 50-59.

16. Liskov, B., et al. "Preliminary Argus Reference Manual," Programming
Methodology Group Memo 39, MIT Laboratory for Computer Science,
Cambridge, MA, October 1983.

17. Marzullo, K. "Loosely-Coupled Distributed Services: A Distributed Time
Service," Ph.D dissertation, Stanford University, Department of
Computer Science, Stanford, CA, 1983.

18. Moss, J. E. B. "Nested Transactions: An Approach to Reliable
Distributed Computing," MIT/LCS/TR-260, MIT Laboratory for
Computer Science, Cambridge, MA, 1981.

19. Nelson, B. "Remote Procedure Call," Technical Report CMU-CS-81-119,
Carnegie Mellon University, Pittsburgh, PA, 1981.

20. Postel, J. "Internet Protocol," Report RFC 791, Defense Advanced
Research Projects Agency, Information Processing Techniques Office,
Arlington, VA. September, 1981.

21. Reed, D. P. "Naming and Synchronization in a Decentralized Computer
System." MIT/LCS/TR-205, MIT Laboratory for Computer Science,
Cambridge, MA, 1978.

172

PROGRAMMING METHODOLOGY

References

1. Bernstein, P. A., and Goodman, N. "Concurrency Control in Distributed
Database Systems," ACM Computing Surveys 13, 2 (June 1981),
185-221.

2. Bernstein, P., Goodman, N., and Lai, M.-Y. "Two Part Proof Schema for
Database Concurrency Control," Proceedings of the Filth Berkeley
Workshop on Distributed Data Management and Computer Networks,
71.84, February 1981,

3. Chan, A., et al. "The Implementation of an Integrated Concurrency
Control and Recovery Scheme," Technical Report CCA-82-01,
Computer Corporation of America, Cambridge, MA, March 1982

4. Chiu, S-Y. "Debugging Distributed Computations in a Nested Atomic
Action System," Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, to appear.

5. DuBourdieu, D.J. "Implementation of Distributed Transactions,"
Proceedings of the Sixth Berkeley Workshop on Distributed Data
Management and Computer Networks, 81-94,1982,

6. Eswaren, K. P., Gray, J. N., Lorie, R. A. and Traiger, I. L. "The Notions of
Consistency and Predicate Locks in a Database System,"
Communications of the ACM 19 11 (November 1976), 624-633.

7. Gray, J. N. "Notes on Data Base Operating Systems," Lecture Notes in
Computer Science 60, Goos and Hartmanis (eds.), Springer-Verlag,
Berlin, 1978, 393-481.

8. Herlihy, M. P. "Replication Methods for Abstract Data Types,"
MIT/LCS/TR-319, MIT Laboratory for Computer Science, Cambridge,
MA, May 1984.

9. Korth, H. F. "Locking Protocols: General Lock Classes and Deadlock
Freedom," Ph.D dissertation, Princeton University, Department of
Computer Science, Princeton, NJ, 1981.

10. Kung, H.T. and Robinson, J.T. "On Optimistic Methods for'Concurrency
Control," ACM Transactions on Database Systems 6, 2 (June 1981),
213-226.

171

PROGRAMMING METHODOLOGY

concurrency control method employing state information. This method is general: it
can be used to implement any concurrency control scheme that preserves
serializability, but at the potential cost of increased message traffic and additional
constraints on availability.

Herlihy's reconfiguration technique allows the availability properties of replicated
data to be changed dynamically. The ability to reconfigure incurs a negligible cost
when it is not used. When an object is actually reconfigured, the technique imposes
a cost in the form of a temporary period of increased message traffic and reduced
availability. A replicated reference counting scheme is introduced to discard
information rendered obsolete by reconfiguration.

Herlihy also developed an extension to the method that increases availability in the
presence of partitions. This technique preserves serializability, but not external
consistency. It does not require explicit partition detection or static transaction
classes, it is independent of the concurrency control method, and it imposes
negligible costs when it is not used.

170

PROGRAMMING METHODOLOGY

If queues were implemented in terms of files, then files must be read and written to
implement both Enq and Deq. leading to the quorum choices shown in Figure 11-6.
However. the dependency relation for queues allows more freedom in choosing
quorums, as is shown Figure 11-7. (In this figure, we distinguish Deq events that
terminate normally from those that terminate abnormally, since different final
quorums can be used in the two cases.) This extra flexibility can be used to increase
the availability of the Enq operation at the expense of decreased availability of the
Deg operation. Such a tradeoff would allow clients of a printer service to continue
queuing requests for printing even when the device itself is down.

Enq (3,3)
Normal Deq (3,3)
Abnormal Deq (3,0)

Figure 11 -6: Quorum Choices Available for Queues Implemented by Files.

Enq (0,1) (0,2) (0,3)
Normal Deq (5,1) (4,2) (3,3)
Abnormal Deq (5,0) (4,0) (3,0)

Figu re 11-7: Quorum Choices for Queues Implemented by Logs.

5.3. Additional Results

In addition to developing the basic replication method, Herlihy also extended the
method to include concurrency control, to allow the system to be reconfigured, and
to permit continued execution in the presence of partitions.

Although the method permits replication and concurrency control to be
implemented independently, as was assumed above, a higher level of concurrency
can be supported if the concurrency control method is integrated with the
replication method. Herlihy developed a simple and efficient concurrency control
method based on predefined operation conflicts. This method is optimal for the
amount of information it uses: no concurrency control method based exclusively on
predefined conflicts can support a higher level of concurrency. Nevertheless, the
method has two disadvantages: because it does not take advantage of state
information, it is inherently limited in the level of concurrency it can support, and it
provides poor support for partial operations.

To remedy these shortcomings, Herlihy also developed a more powerful

169

PROGRAMMING METHODOLOGY

Informally, a request depends on an event if omitting that event from a request's
view might produce an incorrect response. For example, consider files with the
standard read and write operations. Read requests depend on (all) Write events
(events whose request part is a write), because the correct response to Read
requires knowledge of prior Write events. Write requests do not depend upon prior
Read or Write events, because the response to the Write is always the same.

Similarly, Deq requests depend on prior Enq and normal Deq events (Deq events that
return an item), because knowledge of these events is needed to determine which
item to dequeue. Enq requests do not depend on any prior events, because Enq, like
Write, has only one possible response. Expressing the dependency relation in terms
of events allows a request to depend on just a subset of the events associated with a
single operation.

Constraints on quorum intersections can be derived from the dependency relation
as follows: To carry out a request, the initial quorum must intersect with the final
quorum of all operation executions leading to events depended on by the request. It
can be shown that choosing quorums in this manner leads to a correct
implementation, and that no weaker set of constraints can guarantee correctness.

For example, the initial quorum for a read request must intersect the final quorum
for every execution of a write operation, since read depends on all write events.
However, the initial quorum of a write request needs to intersect nothing, since a
write request depends on no events. The possible quorum choices for five DM sites
are shown in Figure 11-5.

Read (1,0) (2,0) (3,0) (4,0) (5,0)
Write (0,5) (0,4) (0,3) (0,2) (0,1)

Figure 11-5: Quorum Choices for Files Replicated at Five Nodes.

In this figure, each row shows possible choices for the initial and final quorums for
a set of events: the row is labeled to identify the set of events. Thus "read" refers to
all events associated with executions of the read operation, while "write" refers to all
events associated with executions of the write operation. Each column shows a set
of consistent choices for all the rows. Thus, if in carrying out a read request we read
from an initial quorum consisting of two DM's (and write to none), then in performing
a write operation we must write to a final quorum consisting of four DM's. In any
given system, one of the columns must be chosen.

By providing direct support for objects of arbitrary abstract type, our replication
method imposes fewer constraints on quorum choice than existing replication
methods based on files. For example, consider the queue object discussed above.

168

PROGRAMMING METHODOLOGY

some action A would not be visible to other operations that use that log on behalf of
other actions until A terminates. Furthermore, if A aborts, then its modifications to
the log would be undone.

As mentioned above, an entry in the log records an operation that has been
applied to the object. Each log entry is stamped with a unique timestamp. This
timestamp is selected by the concurrency control system in such a way that the
timestamps define a total order that is consistent with the serialization order of the
actions that cause the operations to be executed. For example, if logs were
implemented as built-in atomic objects of Argus, then timestamps would be chosen
as part of two-phase commit, and written into their associated entries automatically
as part of phase 2.

An operation is executed in the following four steps.

1) When a TM receives a request from a client, it reads the logs from an
initial quorum of DM's for that request. These logs are merged in
timestamp order to construct a larger log called a view.

2) The TM chooses a response consistent with the object state as defined
by the view.

3) The TM records the request and response by appending a new entry to
the view, and sending the modified view to a final quorum of DM's for
that event. Each DM in the final quorum merges the view with its
resident log.

4) The response is returned to the client.

An analysis of the algebraic structure of an object's type is used to derive a
deliendency relation, which can then be used to derive a set of constraints on
quorum intersections. The basic idea is that to carry out a request to execute an
operation, it is necessary to observe the effects of some of the operation executions
that occurred in the past. A dependency relation thus relates a request to a set of
past executions. This notion of past executions is expressed in terms of events,
which are request-response pairs.

For example, consider a queue object with an Enq operation to enqueue an item at
the head of a queue and a Deq operation to dequeue an item from the tail of the
queue. The Enq operation always terminates normally; an execution of Enq is
represented by an event <Enq(x), ok). The Deq operation terminates normally if the
queue is non-empty, leading to an event of the form <Deqo, ok(x)>; however, if the
queue is empty the operation terminates abnormally, described by an event of the
form <Deqo, empty>.

167

PROGRAMMING METHODOLOGY

can be detected by the absence of a response, we do not assume that the different
kinds of failure can be distinguished: the absence of a response may indicate that
thc original message was lost, that the reply was lost, that the recipient has crashed,
or simply that the recipient is slow to respond.

The basic containers for data are called objects. Each object has a type, which
characterizes its behavior by defining a set of possible states together with a set of
primitive operations that provide the (only) means to create and manipulate objects
of that type. Each type has an accompanying specification that gives the meaning of
the operations provided by the type. A replicated object is an object whose state is
stored redundantly at multiple sites.

Replicated objects ate implemented by two kinds of modules: Data Managers
(DM's) and Transaction Managers (TM's). (Both the TM's and DM's could be Argus
guardians.) The object's state is replicated among the DM's and managed by the
TM's. DM's serve as long-term repositories for the object's state, while TM's execute
the object's operations on behalf of the object's clients. To apply an operation to a
replicated object, a client sends a request to a TM for the object. The TM reads the
data from some collection of DM's, carries out a local computation, sends updates to
some collection of DM's, and returns a response to the client. Each operation is
executed atomically.

An operation's availability to a client depends on two factors: the client must first
be able to locate a TM for the object, and the TM must in turn locate enough DM's to
carry out the operation. Because the TM's do not interact directly with one another,
new TM's can be created without affecting existing ones. Consequently, TM's can
be replicated to an arbitrary extent, implying that the availability of the replicated
object is determined by the availability of the DM's.

5.2. The Replication Method

Unlike most other replication methods, the object is not represented by a collection
of copies; instead, each DM maintains a partial log of the operations that have been
applied to the object. The method is based on the notion of a quorum, which is a set
of DMs. Associated with each operation are a set of initial quorums and a set of final
quorums. To execute the operation, it is necessary to read the logs from all
members of one of the initial quorums, and update the logs of all members of one of
the final quorums.

In the following we assume that concurrency control is implemented independently
of the replication method. This could be accomplished by having each log be a built-
in atomic object of Argus. In this case the system would manage read and write
locks for the logs, and changes made by one operation to some log on behalf of

166

PROGRAMMING METHODOLOGY

5. REPLICATION

Replicated data is data that is stored redundantly at multiple locations in a
distributed system. Replication can enhance the availability of data in the presence
of failures, increasing the likelihood that the data will be accessible when it is
needed. Replication is needed to implement distributed programs in which a high
level of availability is important, such as banking systems, airline reservation
systems, authentication servers, and mail systems.

Herlihy [8] has developed a new method for managing replicated data. Unlike
many methods that support replication only for uninterpreted files, his method makes
use of type-specific properties of objects (such as sets. queues, or directories) to
provide more effective replication. The method is both general and systematic. It is
general because it is applicable to objects of arbitrary type, and it is systematic
because constraints on correct implementations are derived directly from the
algebraic structure of the data type in question. These constraints are both
necessary and sufficient: any replicated implementation satisfying these constraints
is correct, and no smaller set of constraints guarantees correctness. Herlihy's
method is described below.

5.1. Model of Computation

The replication method is based on a model of computation similar to the one
assumed by Argus. A distributed system consists of a collection of sites connected
(only) by a communication network. A site consists of one or more processors, one
or more levels of memory, and any number of devices. We assume that any site can
communicate with any other when the network is functioning properly. We make no
assumptions about the speed, connectivity, or reliability of the network.

The model admits two kinds of failures: site crashes and communication failures.
When a site crashes, its resident data becomes temporarily or permanently
inaccessible. We assume that all communication failures take the form of lost
messages: garbled and out-of-order messages can be detected (with very high
probability) and discarded. Transient communication failures may be hidden by
lower level protocols, but longer-lived failures can result in situations where
functioning sites are unable to communicate. One such situation is a network
partition, in which the sites are divided into disjoint sets such that functioning
members of different sets cannot communicate. Partitions are not the only such
situations that can arise: for example, one site may be able to send messages to
another, but not vice-versa.

A failure is detected when a site that has sent a message fails to receive a response
after a certain duration. Although we assume that site crashes and lost messages

165

PROGRAMMING METHODOLOGY

Notice that two deposit operations commute: The results they return and the final
state of the account do not depend on the order in which the operations are
executed. However, two withdraw operations do not commute: If the balance in the
account is large enough to cover either but not both of the withdrawals, then both
the results returned by the operations and the final state of the account depend on
the order in which the operations are executed.

Now consider the following execution h, in which a first deposits $10 in the
account and commits, and then b and c concurrently withdraw $4 and $3,
respectively, and then commit:

<deposit(10),y,a>
(ok,y,a)

<commit,y,a)
<withdraw(4),y,b>
<withdraw(3),y,c>

<ok,y,c>
<ok,y,b>

<commit,y,c>
<commity,b>

This execution satisfies the requirements for dynamic atomicity: Precedes(h)
contains the pairs <a.b> arid ,c>. and h is serializable in the orders a-b-c and a-c-b.
However, since withdraw operations do not commute, none of the two-phase locking
protocols based on conirnutativity can permit this execution, in which b and c
execute withdraw operations concurrently, to occur.

Dynamic atornicity allows sur'h an execution because the operations executed by a
can be considercd in deciding when those invoked by b and c can be scheduled.
History-independent protocols, like those in [21, [6], [9], must schedule b and c the
same way regardless of operations executed earlier by other activities like a, and so
cannot permit b and c to execute withdraw operatii .concurrently.

Similar situ,'tions arise with any data type that Lcchaves like a finite pool of
re-;ources, with operations to add objcets to and remove objects from the pool:
Dynamic atomit-ity permit, activities to remove objects from the pool concurrently,
but lockirit implementations (indeed, any historyindependent protocol) will not
permit this level of concurrency.

Locking protocols are clearly useful for many applications, and can be
inipl rnented r.l~ativ ly esily. The uxamples above illustratU. however, that there
ni.,y be apphications for wh tih locking protocols .arite inadquatc Wcihl presents
several implnientations thid achieve more co ncur rcricy than is possible with
locking. Not surprisingly. ,;ornet of these implememntoitioris are mor, co:rmplex tirn the
corn spondinq oi s baved on locking It nun ains to tie seern wht-ther the increased

concurrency is worth the ad(ld corplkity of the impheniertatons.

164

PROGRAMMING METHODOLOGY

<member(2),x,a>
<insert(3),x,b>

(okx,b>
<falsex,a>

<member(3),x,c>
<commit,x,b>

<true,x,c>
<commitxa>
<commit,x,c>

satisfies the requirements for dynamic atomicity. Precedes(h) contains the single
pair (b,c>, and h is serializable in the orders a-b-c, b-a-c, and b-c-a.

Weihl shows that if all objects in a system are dynamic atomic, then the activities in
the system are atomic. The proof hinges on the fact that objects never "disagree"
about the "precedes" relation: There is always at least one total order that is
consistent with all of the local "precedes" relations. Thus, if each object ensures
serializability in all total orders consistent with its local "precedes" relation, then
objects will agree on at least one (global) serialization order. This means that
dynamic atomicity satisfies our goals for a local atomicity property. Weihl also
shows that dynamic atomicity is optima: No strictly weaker (i.e., more permissive)
property of objects suffices to ensure global atomicity.

4.2. Relationship to Locking

Dynamic atomicity is a property of objects, not a protocol or an implementation
technique. It characterizes the behavior of objects implemented using two-phase
locking protocols like those in [2], [61, [9]. These protocols are each based on some
notion of "commutativity:" Activities are allowed to execute operations concurrently
only if the operations "commute." Locking protocols based on commutativity have
two structural limitations that prevent them from achieving all of the concurrency
allowed by dynamic atomicity. First, they are conflict-based: Synchronization is
based on a pair-wise comparison of operations executed by concurrent activities. In
contrast, dynamic atomicity depends on the sequences of operations executed by
activities. Second, the protocols are history-independent: Synchronization is
independent of past history, in particular the operations executed by committed
activities. In contrast, dynamic atomicity depends on the entire execution.

Consider, for example, a system containing a bank account object y with three
operations: deposit, which adds a specified amount to the balance of the account;
withdraw, which either removes a specified amount from the account if the balance
will remain non-negative (terminating with result "ok"), or leaves the account
untouched if the account has insufficient funds to cover the withdrawal (terminating
with result "no"); and balance, which returns the current balance in the account.

163

PROGRAMMING METHODOLOGY

<member(3),x,a>

(ok,x,b>
(false,x,a>

<member(3),x,c>
<commit,x,b>

<true,x,c>
(commit,x,a>
(commit,x,c>

h is serializable in the order a-b-c, since the specification of the set object x allows
the following execution:

<member(3),x,a>
(false,x,a>

<commit,x,a>
(insert(3),x,b>

(ok,x,b>
(commit,x,b>

(member(3),x,c>
(true,x,c>

<cornmit'x'c>
However, since precedes(h) contains only the single pair (b,c>, h must also be
serializable in the orders b-a-c and b-c-a to be dynamic atomic. This is not the case;
for example, the serial execution

(insert(3),x,b>
(ok,x,b>

<commit,x,b>
(memiber(3),x,a>

<falsexa>
(commit,x,a>

(member(3),x,c>
(true,x,c>

<commit,x,c>
is not permitted by the specification of x.

As another example, the execution

PROGRAMMING METHODOLOGY

5. Liskov, B. H. International Professorship in Computer Science,
Katholieke Universiteit Leuven, Leuven, Belgium, January 23-27, 1984

"Introduction to CLU"
"Specifying Data Abstractions";
"Program Construction Using Abstractions";
"Using aBstractions in Programming Languages"

6. Liskov, B. H. International Professorship in Computer Science,
Katholieke Universiteit Leuven, Leuven, Belgium, January 23-27, 1984

"The Argus Language and System"
"Concepts and Issues"; "Argus Features"; "Example";
"Subsystems"; "Implementation"; "User-Defined Atomic
Data Types"; "Discussion"

7. Liskov, B. H. Advanced Course on Distributed Systems -- Methods and
Tools for Specification, Munich, Germany, April 9 - 13, 1984

"The Argus Language and System"
"Concepts and Issues"; "Argus Features"; "Example";
"Subsystems"; "Implementation"; "User-Defined Atomic
Data Types"; "Discussion"

8. Weihl, W. E. "Data-Dependent Concurrency Control and Recovery,"
Second Annual ACM Symposium on Principles of Distributed
Computing, Montreal, Canada, August 17, 1983.

9. Weihl, W. E. "Specification of Atomic Data Types,"

Ccrnell Univers;ty, Ithaca, NY, December 1, 1983
Harvard University, Cambridge, MA, March 5,1984
MIT, Cambridge, MA, March 19,1984
AT&T Bell Laboratories, Murray Hill, NJ, March 26, 1984
DEC Systems Research Center, Palo Alto, CA, April 2,1984
U; versity of California at Berkeley Berkeley, CA, April 3, 1984
!BM Research Laboratory, San Jose, CA, April 4, 1984
Stanford University, Stanford, CA, April 5, 1984
DEC Corporate Research, Hudson, MA, April 11, 1984
Tufts University, Medford, MA, April 12, 1984
Carnegie-Mellon University, Pittsburgh, PA, April 16, 1984

176

PROGRAMMING TECHNOLOGY

Academic Staff

A. Vezza, Group Leader

Research Staff

T. Anderson R. Myhill
D. Lebling C. Reeve
J. Licklider

Graduate Students

D. Buffo 1. Rahim
D. Lee R. Sun
P. Lim A. Yeh

Undergraduate Students

H. Baek B.Law
J. Dike S. Malone
M. Duke M. McEntee
D. Elrod S. Meeks
D. Fagan C. Naylor
M. Herdeg S. Pitts
J. Hirata G. Shaw
C. Humphreys C. Shepard
Y. Jo-Kim J. Shivanandan
T. Kim B. So
M. Kudisch J. Wang
S. Kukolich

Support Staff

A. Finn N. Mims

PROGRAMMING TECHNOLOGY

1. INTRODUCTION

This is the report of the Programming Technology Group. The main effort of the
group continues to be development of a computer-based planning system to be used
where voluminous data is available and necessary to support planning. Within the
Programming Technology Group this year, development has focused on finishing
and refining the following:

*Movement of a large system of software development tools, centered
upon MDL, from the DECSYSTEM-20/TOPS-20 environment in which it
was initially constructed, to an open set of environments including Vax-
Unix and systems based on the 68000 family of chips.

" A planning aid based on the essential ideas of VisiCalc, but including
symbolic computation, data management, and graphic display.

" A graphical programming and monitoring system.

The language MDL, that is the centerpiece of the system of software development
tools being transported to the Vax and 68000 environments, is both an extension of
LISP and a production language that supports programming in a more conventional
Fortran-like style. The acronym "MIM," used in the remainder of the report, stands
for Machine Independent MDL.

Currently the group's work is focused on implementation of the planning s'ystem at
LCS headquarters and at DARPA. A Vax-11/780 was installed at LCS headquarters
in the late winter of 1984 and LCS administration is expected to start using the
planning system some time this summer or fall for a full range of financial and
personnel planning activities. A Vax-11/780 has also been purchased for DARPA
and a version of the planning system is expectcd to be operating there in the fall of
1984.

2. MIM COMPILER DEVELOPMENT

At the beginning of the reporting year, the three compilers that constitute the
current sot for MIM (MIMC, MIMOC20 and MIMOCVax) were all working adequately.
However, increased usage of the compilers by the user community revealed some
shortcomings in them. There were three areas of concern:

1) The code produced ran too slowly.

2) The compilers themselves ran too slowly.

3) The compilers ran in old MDL as opposed to MIM.

178

PROGRAMMING TECHNOLOGY

A large portion of the group's effort was spent addressing these issues and
significant progress has been made. Both MIMOC20 and MIMOCVax, the open
compilers for the DECSYSTEM-20 and Vax/Unix, were improved in a number of
ways.

,,The register allocation algorithm for MIMOC20 was completely
overhauled . Optimizations were added to prevent unnecessary storing
of temporaries in memory and to keep values in registers during tight
loops. These optimizations already existed in MIMOCVax, so it was not
necessary to implement them,

" A "look ahead" mechanism was added to both of the MIMOCs. This
mechanism enables two or three different virtual MIMA instructions to be
compiled together into less object code instructions. For example, if a
series of MIMA instructions extracts a value from a structure, adds one
to it and puts the result back into the structure, this can compile into one
instruction on either the DECSYSTEM-20 or the Vax. Without the look
ahead mechanism, this kind of combining of instructions would be
impossible.

" In order to decrease the overhead involved in making function to
function calls within a compiled package of functions, a faster internal
calling sequence was added to MIMOC20. This also permits the
compiler to throw away the entry information for theinternal compiled
functions. This optimization may be added to MIMOCVax at some later
time.

" All three MIM compilers were found to be unacceptably slow for
reasonable use. A major reason for this was the necessity of always
compiling an entire file at one time when in fact only one or two
functions had changed since the file was previously compiled. A partial
recompilation facility has been added to all three of the compilers. This
facility permits a user to recompile only those functions that have
changed since the last time the program was compiled.

* Unfortunately using the precompilation facility precludes producing
glued code in MIMOC20 and MIMOCVax. A program to glue code
produced by MIMOC20 has been written to address this problcm. This
enables a user to take advantage of both the convenience of partial
recompilation and performance of glued function calls. Since the Vax
has variable length instructions, writing an after the fact glue program is
much more complex. As of now, we haven't undertaken it.

179

PROGRAMMING TECHNOLOGY

It is always dangerous to compile a compiler using itself because the
possibility of introducing very obscure bugs is always present. These
obscure bugs come about because if the compiler miscompiles itself,
the error may not show up until something else is compiled. This is often
referred to as the recursive compiler bug. In order to minimize the
likelihood of recursive compiler bugs. we delayed moving the compilers
from old MDL106 into MIM for as long as possible. We wanted to make
sure things were very reliable before doing this. That level of reliability
has been achieved and all three compilers a, e now running in W "A.

" Moving the compilers from MDL106 to MIM did introduce some new
performance problems especially in I/0. MIM's I/0 is very general and
flexible but is also slower than MDL106 I/0. However, by writing special
output programs that are specific to the compilers' needs, we were able
to recover the performance that was lost.

* Additional benefits of moving the compilers into MIM include: the ability
to compile larger programs. the capability of running the compilers on
the Vax as well as the DECSYSTEM-20 and obviation of conditionals in
target programs to get around incompatibilities between MIM and
MDL106.

The fact that MIMOC20 and MIMOCVax do many similar things in many different
ways has led us to rethink our approach to these programs. While it was appropriate
to investigate different ways of writing open compilers early in the project, it has
become apparent that this approach involves a lot of duplicated effort. We have just
begun work on a table-driven. open compiler that will be easily adaptable to new
machines. We believe this approach will result in a more maintainable system.

3. MIM DEVELOPMENT

Although machine-independent MDL (MIM) had, by the end of the last reporting
period, reached a point where it could be used in place of old MDL for most
purposes. it was still missing some features that MDL had, and its performance left
something to be desired. During this year. many of its deficiencies were remedied.
Where possible, new features appeared in both the TOPS-20 and the Vax/Unix
versions of MIM: in view of tlie group's continued movement away from TOPS-20,
unique features appeared only in the Unix version.

* The PURIFY facility of MDL allowed user programs and data structures
to be made read-only, resulting in two advantages: the read-only
structures were not examined by the garbage collector, thus speeding
things up: and the memory occupied by read-only structures could be

180

PROGRAMMING TECHNOLOGY

shared among several processes, thus reducing the substantial paging
load that MDL put on the system. We added this feature to both MIMs
this year. Unix doesn't yet allow shared memory in this form, but the
Unix implementation of PURIFY does act to increase the virtual memory
available to a MIM process.

• GC-READ and GC-DUMP allow high-speed I/O of MDL data structures,
while preserving sharing within the structures. This is another feature
that existed in old MDL, but only appeared in MIM this year.

" Users can now build arbitrary MDL objects on the stack; thus, temporary
data structures can be used freely without invoking the garbage
collector, and without writing complicated recycling schemes. Old MDL
had a much more restricted form of this; the implementation of this
feature was made much easier because very little of it had to be done in
assembly language.

" On Unix, we developed an interface to pipes, which allow easy
communication between processes. This, in combination with a
package for running inferior forks, allowed an undergraduate to develop
an interface to the INGRES DBMS for use by the planning system.

" Since most of our Vax-i 1/750s have small disks, MIM, MIMC, and the
Vax open-compiler were moved to a file server. In addition to saving
space, this makes it possible to perform updates on all machines in one
operation.

Further performance enhancements were made to MIM.

" The full-copy garbage collector was modified, in conjunction with the
two open compilers. such that it is essentially hand-coded in critical
areas. Since the "hand-coding" was done by the compilers, we were
able to cause the same code to be generated for PURIFY, thus gaining
the same speed advantage there at no cost.

" READ and PRINT were made much faster by careful rewriting of some
critical sections, and by reduction of subroutine-calling overhead where
possible.

" The EVAL/APPLY section of the interpreter also became much faster
after some recoding.

Finally, MIM was made better able to survive in the real world. The Unix version

181

PROGRAMMING TECHNOLOGY

was moved from Berkeley Unix 4.1 to 4.2, which involved some major changes in
system-dependent code. In conjunction with this, MIM was finally taught about the
structure of virtual memory under Berkeley Unix. It now uses as little as it can; but it
can get the maximum amount available when needed. This is particularly important
on the Vax-11/750s with small disks that many of our users do oevelopment on.
Reliability continued to improve in all areas, as the continued improvement in speed
and features led to more extensive use of the system.

4. PLANNING SYSTEM

Work on the planning system PLAID has continued during the last year. Progress
has been divided between improvements and enhancements of existing features on
the one hand, and expansion of the system into the area of worksheet sharing and
communication on the other.

Refinements and additions to many existing features of PLAID have been made,
motivated by comments from local users of the system and observation of its
behavior.

Major expansion of the system has been performed to enable sharing of
worksheets among the members of a group of cooperating users. The user of the
system is given detailed control over his own usage of other users' worksheets, and
also of other users' usage of his own worksheets. The usage controls have enough
flexibility that either very free or very controlled worksheet sharing is possible.

4.1. Incremental Improvements

In the area of incremental improvements, we will touch briefly on some of the
changes made over the last year.

Major internal changes have been made to the user interface and command
interpreter. It is expected that the current command interpreter is the final redesign.
The new interpreter makes the definition of new commands and new objects easier,
and also makes the Help and Options facilities available system-wide. In the new
system, items are deposited in a list of relevant help or options information which is
ultimately processed and displayed by the command interpreter. Consequently, only
the command interpreter needs to know the details of how such information is finally
displayed. One pleasant side-effect of the new regime was that Help and Option
window placement expertise could be localized, and so in current releases, such
windows rarely obscure useful information.

The Graph facility has been expanded to allow incremental addition and updating
of such items as titles, labels on graph axes, and so on. The data being graphed may

182

PROGRAMMING TECHNOLOGY

be updated incrementally as well. For example, the number of bars in a bar graph
may be changed without respecifying the entire graph. Finally, a Stacked-bar-graph
style was added to the existing graph styles of XY, Polar, Bar, and Pie-chart.

Many status commands and the data to support them were added. Some of these
additions, such as a "Show worksheets" command, were motivated by the
implementation of the worksheet sharing facility.

PLAID is now able to understand the concept of time. Dates and times are now
legitimate data and may be manipulated by equations. The user may now have time
dependent information in worksheets. It is possible to set the current-time (from the
point of view of a worksheet) as well, and thus explore the time-dep: ndencies of a
model.

As the system expanded, it became apparent that setting and resetting various
options each time it was started was too tedious, and so a "tailor file" facility was
added. The tailor file stores the variable settings for all the system-wide variables.

4.2. Worksheets as Procedures

PLAID has the ability to treat a worksheet as a procedure. The motivation is that
once a model has been constructed, it is both tedious and inefficient to copy the
entire model into every worksheet that wishes to employ it. A revenue forecasting
model might be driven by four or five independent variables. It is in effect a
procedure which takes these variables as arguments and produces output values. In
a sensitivity analysis, one might want to try several different values for each variable.
In normal circumstances, one laboriously changes the variables, then copies the
results into ones worksheet. Some spreadsheet pro(,rams allow this to be done in an
automated way.

In PLAID, the worl-sheet is called as a procedure. It takes as arguments a list of
pairs: cells in the worksheet and the values you want in them. The old values are
pushed, the worksheet is reevaluated, values are pulled out, and the old values are
restored. , he syntax looks like a "call by name". For example:

@MORTGAGE(PRICE: 100000, INTEREST: 13.5,TERM: 30, PAYMENT)

would evaluate the mortgage worksheet with the named slots' values replaced, and
return the contents of the PAYMENT slot.

183

PROGRAMMING TECHNOLOGY

4.3. INGRES Interlace

During the past year an experimental database interface module was written (by
Baek). This module allows records to be read or written from the INGRES database
system into a worksheet. For example, a record would be read into rows of a
worksheet, and the subrecord names retrieved as the column headers. Further work
is expected to be done in this area. For example, it would be useful to be able to
define a worksheet as containing the records which meet some selection criteria,
and have its contents automatically updated if any of the criteria change.

4.4. Constraints and Undo

One way of seeing a worksheet is as a system of equations which is resolved each
time it is changed. Given this model, it would useful to be able to place constraints
on the values of these equations, and to undo changes that cause the constraints to
be violated.

PLAID allows the user to associate a constraint with any cell of the worksheet.
This constraint is in the form of a predicate which is reevaluated whenever the value
of the cell changes. For example, the cell A21 might contain the equation

>A21 EXPENOITURES=@SUM(AI... A20)

which makes it, perhaps, the total of expenditures in a budget. In addition the cell
can contain a "Check" equation:

Check EXPENDITURES =< 20000

which states that if the sum is greater than $20,000, it violates a constraint. Better
still might be

Check EXPENDITURES =< REVENUES

where REVENUES is another cell containing total revenues.

It was in conjunction with constraint checking that the Undo facility was introduced
to PLAID. Whenever a cell is changed, the old value is saved on an undo list. The
Undo command restores the old cell contents to the state at the beginning of the
previous command. In the above example, use of Undo would remove the entry that
caused the sum to overflow the constraint.

It is desirable avoid the sort of problem that can arise when the user is shuffling
many values around in a summed list whose total is constrained. For example, when
the user is juggling the sizes of various line items in a budget, the sum would almost
inevitably violate the constraints now and then. In PLAID, this problem can be
avoided by manually turning off continuous evaluation and continuous constraint
checking, and then either turning them on again or explicitly evaluating using the
"Evaluate" key, which performs evaluation and checking.

184

PROGRAMMING TECHNOLOGY

The Undo facility is as yet unable to perform "general" Undos, because not all
changes to worksheets or the PLAID environment are performed by changing cells
in the worksheet. The mechanism will support a more general implementation, but it
has not yet been installed.

4.5. Communication

PLAID allows users to get information from other users' worksheets, subject to the
restrictions imposed by the protection scheme described in the next section. The
goal of the communication scheme was to enable you to use someone else's
worksheet without being unduly surprised and discomfited when he makes major
changes to it. By the same token, it should not get in your way if you are using one
of your own worksheets or don't care about changes because you expect them
(when you are using a rapidly changing database, for example).

There are two "communications" commands, Use and Update. The former
establishes a link between the current worksheet and some other, and the latter
updates changed values taken from the other worksheet.

The full specification of Use is:

Use worksheet version when-to-update

where the latter two arguments have defaults.

Possible versions are newest and release (meaning newest "official" release).
Newest version means to look for the file with the same first name as the worksheet
argument and extension ".WS". Release means to look instead for an extension of
".WSR". Directories in the worksheet search path are examined in order. The
search path may be specified explicitly by the user ("Set search-path") or implicitly;
it is normally the set of all directories from which worksheets have been loaded.

When-to-update specifies the circumstances under which the worksheet is
examined for changed cells. Possible arguments are always, when-told and never.
Always means that whenever the using worksheet is loaded, the used worksheet is
also loaded. This setting provides no insurance against changes in the used
worksheet. On the other hand, there is no overhead in storing old values from the
used worksheet. Never means that the values in the used worksheet are copied and
never updated. In effect, you get a never-changing snapshot of the used worksheet.
When-told is a middle ground. A snapshot of the used worksheet is kept in the using
worksheet, but it is updated when the user specifically asks. Thus, at some cost in
overhead, you can be insulated against surprises.

Issuing a new Use command changes the mode of usage for the worksheet being
used, so (for example) never mode is not irrevocable,

185

PROGRAMMING TECHNOLOGY

The second part of the sharing facility is the Update command, which gives the
user control over updating of values in worksheets he is using.

Update worksheet method

The method argument tells how the copy of worksheet used by the current
worksheet should be updated. There are three methods available. "Full" means
that all changed values from the worksheet are accepted without question or
interaction. "Cut" means that all new values are rejected and the copy of the
worksheet is in effect frozen. This is said to cut the connection between the two
worksheets. Finally, "Ask" means that each change will be displayed to the user,
and he will be given the opportunity to pass on each change individually. For each
reference, the user has the option of accepting the change or cutting the link.

One result of this scheme is that a worksheet may only directly reference one
version of another worksheet at a time. It may contain cut references from earlier
versions, but active references to only one version.

4.6. Protection

PLAID provides three levels of protection, which may be applied to individual users
or groups of users, and may refer to worksheets, regions or even individual cells.

A PLAID entity (worksheet, region, or cell) is by default inaccessible to users other
than its owner. Read access to the values, read access to the model (the system of
equations) and write access may be permitted by the owner. When a worksheet is
used, the accessibility of the cells is set by looking up the access for the user from an
access-control list contained in the worksheet. In effect, the worksheet is sanitized.
Cells that the user cannot see look like they are empty. Attempting to write in a write-
protected cell causes an error.

PLAID allows access to be controlled on the worksheet level if desired. It is also
possible to permit or refuse access to regions or cells as well. Access may be
permitted in smaller areas withio large refused areas. For example, the owner may
say

Permit (user) TAA (access) read (region) A1.B18

Refuse (user) TAA (region) B12

The above grants tie user TAA read access to all but one cell of a rc angular
region.

In general, worksheets are files in an operating system (TOPS-20 or Unix), and as
such must be readable to be Used. In the initial implementation of protection, no
attempt has been made to resolve the contradictions inherent in "protecting"

186

PROGRAMMING TECHNOLOGY

something that can itself be read and potentially edited "out-of-band" of the PLAID
environment. In the final implementation, worksheets may be accessed through
some othcr mechanism that allows them to be read-protected on a file by file basis.
Some analogue of an access-control job or "message vault" will be used.

4.7. PLAID and MDL

PLAID was converted during 1982-1983 to run on Unix in machine-independent
MDL. During the last year, MDL under Unix became sufficiently well developed and
complete to enable PLAID to move to a Vax-11/780 running Unix (Berkeley 4.2) as
its primary development machine. Until then, modules were debugged and compiled
oo Tops-20 and then cross-compiled for Vax Unix and the object files moved to Unix.
Now the situation is reversed.

5. GRAPHICAL PROGRAMMING AND MONITORING OF
PROGRAM BEHAVIOR

The purposes of this project are (1) to discover some good ways to use graphics to
facilitate the preparation and understanding of computer programs and (2) to
develop a system for graphical programming and graphical monitoring of the
interpretation of programs. The project is being carried out by a professor and a
group of undergraduate students. They have been at work on it for about 20 months,
and they have some impressions and the beginnings of a system. In order to
summarize, it will be best to begin with the system, which represents just one of
several approaches that the group has explored. The system is written in MDL, a
language similar to LISP. LISPers can read MDL if they consider angle brackets to

be parentheses and remember that you have to put a period in front of a symbol to
represent the local value of the symbol -- and a very few other such things.

Thus far, the system deals only with small program components. The work is just
at , point of combining small components to form larger ones and combining
larger ones to form programs. Let us take as an example the preparation of a
program component that determines whether or not the greatest of three numbers
(the MAX of them) is or is not greater than the literal integer 100. In MDL, what the
programmer wants to come out with is the function that is created by evaluating

<DEFINE NAME (X Y Z) <G? <MAX .X .Y .Z> 100>>

We have not been able to find a graphical approach that works faster or uses less
space than simply writing that definition. Here is what we, as a graphical
programmer, do to achieve essentially that result:

We begin with a running system, which includes a display screen and mouse. On

187

PROGRAMMING TECHNOLOGY

the display is a large square with a few pictograms in it. The square represents a
general (i.e., as yet unspecified) MDL object. Our task is to develop or differentiate
it, to specify it. Also on the display screen are three menus. One presents about
eight alternative things to do. Another presents an array of about 70 basic MDL
operators. And the third presents an array of about 30 MDL data types and classes.
In this example, we shall deal with only a few of those menu items.

In the square are a few pictograms that constitute a menu. The most frequently
used menu item, which we select with our mouse at the outset, directs the
differentiation of the general MDL object into an applier, i.e., a form that applies an
operator to operands. (For the sake of uniformity, "applies" is interpreted in a very
general sense, and an applier can deal with special constructs (such as COND) as
well as things that are unambiguously operators.) When we select the applier
pictogram, the square gets a vertical line down its middle, to separate the right-hand
operator half from the left-hand operand half, and we are asked to specify the
operator. We select G? from the operator menu with our mouse. A box containing
G? appears on the left-hand side and two boxes for operands appear on the right-
hand side. In the latter two boxes are menu pictograms with which we can select
whether to continue the differentiation with appliers or to terminate it by specifying
data objects.

We want the top box on the right-hand side to represent the maximum of the three
variables, so we select its applier pictogram. The system asks us to specify the
operator, and we select MAX from the operator menu. Since MAX can take any
number of operands, the system asks us how many. We say "3". Thereupon, a MAX
operator box and three operand boxes fit themselves into the top right-hand
rectangle. At this point, we can work on one of the three MAX operand boxes, or we
can deal with Gs need for a second operand. Let us go to the top MAX operand
box.

From the top MAX operand box, we select the datum pictogram. The system wants
to know whether we want to specify a datum value literally or to specify a variable or
constant of the kind that would, in symbolic programming, be specified by name. (In
graphical programming, the latter kind has a place, but not a name.) We indicate, by
clicking a mouse button, the latter kind. Then we point to where we want it to reside.
And then we point to a type or class in the data type and class menu. Let us select
the integer pictogram. The system says that the standard illustrative value for an
integer is 10000 and gives us a chance to supply an alternative value. (This value is
not going to be part of the program, but it will go into a data base of data values for
testing purposes,) We accept the standard value, and the system draws an integer
pictogram in the place we selected.

Following the same procedure, we deal with the other two MAX operand boxes.

188

PROGRAMMING TECHNOLOGY

Then we turn to the second operand box of G?. This time we tell the system we want
to specify a datum value literally. We type "100", and it replaces the number
pictogram in the operand box. That completes the specification, which, despite the
length of this description required only a few mouse selections and the typing of four
numbers.

To see the function we have prepared, we select the function icon in the things-to-
do menu, and the system displays the definition form for the new function, using the
function name TEST:

<DEFINE TEST(i.1 1.2 i.3)<G?<MAX .1.1 .A.2 .i.3>100>>

and gives us an opportunity to substitute a name of our choosing. The system
cannot yet, but soon will be able to, place a miniaturized copy of the graphical
pattern we created into yet another menu area so that we can use it as a component
in building la ger units of program.

We can test the newly created function with the illustrative data we supplied. We
accepted the standard value of 10000 for the first argument to MAX. Suppose that
we speciied 20000 and 30000 for the other two arguments. Then, if we select the
EV4L icon from the things-to do menu, the system would tell us that, with the
specified d, ta values, the result is T. which means TRUE.

There is a bit more to the system than just illustrated, but that may provide an idea

of what is aimed at.

At present, we are beginning to work on (1) getting the system to deal with
assemblies of components and (2) the incorporation of monitoring features [1]. The
latter will let the programmer try out what he has done thus far and watch its
graphical representation behave .- i.e., watch the unfolding of the interpretation
process as the function resulting from the defit tion is applied to specified
arguments.

Finally, a few brief statements about problems encountered and about the place of
graphics in programming:

1) The most distressing problem is caused by the disproportion between
the great complexity of a serious program and the small size of the
display screen. With a ,. ' sied display and a zooming facility, we think
it would be possible to niakf a graphical pr gramming and monitoring
system that would be helpful to programmers working on large
programs. With anything like 1024 x 768 pixels, it is necessary to have a
lot of information off screen where it is not really very graphic.

2) We have had trouble making the systerm run fast enough to be

189

PAD-AISS 299 LABORATORY FOR COMUTER SCIENCE PROGRESS REPORT 21 JULY 3$f83-JUNE 64UI MASSACHUSETTS INST OF TECH CAflSEIOOI LAN

I ASINCLASSIF lED FOR COMPUTER SCIENCE a DERTOUZOS JUN $4 it

NONEhmhhhhhhhl
mhhhhhhhhhhhhl
momhhhhhhhhhml

50 1113 W E111

IlU. Illll 111116

PROGRAMMING TECHNOLOGY

supportive instead of frustrating. What makes it slow, mainly, is
calculation and not graphic display. Even though the images are thus
far mainly just boxes inside boxes, it may be necessary to substitute
storage of prepared images for calculation and recalculation of images
on the fly.

3) There are several hundred basic programming constructs in a typical
programming language, and nobody wants to learn several hundred new
icons or pictograms before trying out a new approach to programming
that may or may not help much. We have fallen back upon mnemonic
abbreviations of names for the basic MDL operators. The number of
data types is smaller, and it seems right to use icons to represent data
types. The composition of pictographic representations of classes of
data types from pictographic representations of individual data types
seems like a good research problem [2].

4) There will be several thousand functions in a good program library, and
it does not seem probable that, in a western language context in which
people do not already know a lot of pictograms, a way will be found to
represent library functions by icons.

5) It is natural, in developing a graphical programming system, to let the
system watch over what the programmer does and refuse to let him
make syntactic (and perhaps certain semantic) mistakes. This can be

done also in symbolic programming contexts, as in the Programmer's
Apprentice and in syntax-checking program-text editors, but it seems
especially appropriate in a graphical system in which much of what is
done is selection from among system-proffered alternatives.

6) Graphical representations of programs tend to portray the structure of
programs better than do symbolic representations, even if the latter
exploit indentation to achieve a quasi-graphical effect. A goal is to have
a graphical display that, pinned up on a wall, will represent a large
program effectively -- that when viewed from a distance will reveal the
high-level structure and when viewed from close-up will explain the
details.

7) Even if it proves too difficult to deal with the internal workings of large
programs graphically, graphics may still be very useful in marshaling
programs and applying them to data. Each function can show pictorially
what data it needs to work on, and each data set can show pictorially
what kinds of operators can operate successfully upon it. High-level
control of information processing is mainly a matter of connecting

190

PROGRAMMING TECHNOLOGY

together selected operators and operands. Graphics promises to make it
just a matter of pointing to pairs of things to connect, and finding that
the members of a pair fit together neatly if appropriate for each other
and refuse to join if inappropriate.

191

PROGRAMMING TECHNOLOGY

References

1. Naylor, C. M. "Graphically Representing MDL Programs as Trees," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

2. Shivanandan, J. U. "The Representation of Programmer-defined Data
Types in Graphical Programming," S.B. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, June
1984.

Publications

1. Licklider, J.C.R. "Some Problems in Information Policy," in Information
Science in Action: System Design, Debons, A. and Larson, A. (eds.),
Boston, The Hague, Lancaster, Martinus Nijhoff in Cooperation with
NATO Scientific Affairs Division, 1983, Volume II, 640.

2. Licklider, J.C.R. "The Future of Electronic Learning," in The Future of
Electronic Learning, White, M. (ed.), Hillsdale/London, Lawrence
Erlbaum Associates, 1983, Chap. 7, 71-85.

3. Licklider, J.C.R. "Information Technology, Education, and the American
Future," in Intelligent Schoolhouse: Readings on Computers and
Learning, Peterson, D. (ed.), Reston, Reston Publishing Co., Inc., 1984,
271-288.

Theses Completed

1. Naylor, C. M. "Graphically Representing MDL Programs as Trees," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

2. Shivanandan, J. U. "The Representation of Programmer-defined Data
Types in Graphical Programming," S.B. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, June
1984.

3. Sun, R. "XDM: An Approach for Specifying Semantic Integrity
Constraints in a Data Model," S.B. and S.M. theses, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA,
November 1983.

192

PROGRAMMING TECHNOLOGY

Theses in Progress

1. Buffo, D. "A Rule-based System for Financial Planning," S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1984.

2. Lee, D. "Software Portability Relative to Data Base Management
Systems' Software," MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected September 1984.

Talks

1. Licklider, J.C.R. "The Futures of Computers in Education," Lexington
Public Schools, Lexington, MA, January 1984.

2. Licklider, J.C.R. "User Friendliness, Ease of Learning, Ease of Use,"
Bolt, Beranek, and Newman, Cambridge, MA, February, 1984.

193

REAL TIME SYSTEMS

Academic Staff
M. L. Dertouzos S. A. Ward, Group Leader
R. H. Halstead R. E. Zippel
C. J. Terman

Research Staff

D. Goddeau

GRADUATE STUDENTS

J. Arnold D. Nussbuam
P. Cosway R. Osborne
J. Eisen G. Pratt
R. Finn J. Sieber
S. Gray T. Sterling
A. Masterson M. St. Pierre
J. Mercier S. Seda
P. Nuth T. Teixeira

B. Williams

Undergraduate Students

V. Ali A. Manzoor
P. Antaki H. Minsky
A. Bedonian J. Pezaris
E. Broadway J. Noakes
J. Chang S. Raman
A. Gilbert D. Robinow
P. Hood E. Seidman
R. Jenaaez W. Shang
A. Kohli A. Sieving
R. Kukura J. Vance
W. Liske M. Wade
A. Litman J. Wolfe
T. Maloney R. Zabih

REAL TIME SYSTEMS

SUPPORT STAFF

J, Hoppe E. Tervo
L. Kenen S. Thomas

Visitors

G.C. Clark J. Powell
T. L. Goblick M. Shen
M. Kitahara G. Zientara

196

REAL TIME SYSTEMS

1. INTRODUCTION

During the 1983-4 calendar year there has been continuing progress on three
major project areas, as well as several seed efforts which may lead to project-level
research commitments in the coming year. The continuing work is in the areas of (i)
Personal Workstations, (ii) Multiprocessor architectures, and (iii) VLSI development
tools; subsequent sections of this report are devoted to each of these.

2. PERSONAL WORKSTATIONS

The NU personal computer and its companion network-oriented operating system,
TRIX, have been active RTS projects for the past six years. Despite technical
progress, the history of technology transfer aspects of the project has been
generally discouraging during most of this period. We happily report a marked
improvement during the past year.

2.1. NU Deployment

During the 83-84 academic year. Texas Instruments began production of a first-
generation Nu machine based on technology developed at RTS and delivered, in
accordance with the TI/MIT agreement, thirty production machines to our
Laboratory. Each of these machines constitutes a competent and reasonably well-
equipped personal computer comprising Motorola 68010 processor, 2Mb RAM,
84Mb disk, Ethernet, 8088 peripheral and diagnostic processor, ard . "14-line
bitmapped graphics; as delivered, it runs a TI-supported variant of the RTS 68000
UNIX port.

These thirty machines are being deployed within RTS to serve as a staple
computing resource in support of our various research needs. To this end, we have
recently ported many software packages on which RTS depends heavily to the TI
Nu's; these include CAD tools, document production software, MultiLisp, TRIX (see
below), and a number of graphics and other utilities. In addition, the TI Nus provide
the base hardware environment for several experimental processors under
development, including a waveform synthesizer (Miller, Robinow) and a novel
dataf low processor (Antaki).

At this writing, about a dozen of the Nus have been installed and are being used
routinely as tools for other research; we expect to have completed the remaining
installations by September.

197

REAL TIME SYSTEMS

2.2. NuBus Developments

The architectural backbone of the Nu is the NuBus. a flexible 32-bit backplane bus
designed to provide relatively technology-independent coherence across a wide
range of system configurations and price/performance criteria. The original NuBus
development was stimulated, to a great extent, by the conspicuous absence of an
appropriate 32-bit bus standard within the computer industry, and a continuing goal
of the Nu project has been the promotion of such a standard. From the earliest days
of the Nu project, we have interacted with the IEEE P896 standards committee where
NuBus ideas have been clearly influential if not adopted per se. While the IEEE
committee has been a forum for valuable technical debate, it has also been plagued
by strong proprietary interests which have made progress toward concrete
standards painfully slow.

We have been delighted that Texas Instruments, our current industrial partners,
shares our interest in promoting the NuBus as a standard and has devoted
considerable manpower and other resources to that end. They have interested
several additional manufacturers in the production of NuBus-based equipment, and
a recent modification of the MIT-TI agreement allows NuBus sublicenses at very
nominal royalties (shared between TI and MIT). Moreover, their active and persistent
participation in the IEEE standardization effort (jointly with our own) has
substantially furthered the influence of NuBus ideas and may result in the
establishment of the NuBus itself as an IEEE standard. Guarded optimism on the
latter front stems from a non-binding vote taken at a May committee meeting (held at
LCS) to recommend the adoption of the NuBus as a standard; this action remains to
be ratified by a mail vote of the entire committee membership.

2.3. TRIX Development

The progress report for last year briefly describes the architecture of TRIX 1.0, an
operating system whose uniform communication semantics induce unique power
and coherence on a network of interconnected personal computers. In last year's
report we mentioned that two early prototype implementations had been constructed
(single- and multi-processor versions), and that we were considering alternative
targets for a more "serious" implementation which would realistically provide for the
needs of a non-trivial user community. The goal for this latter implementation is the
evaluation of TRIX in the environment for which it is intended, via the use of TRIX
communications to serve higher-level user and application needs.

During the past year we selected the TI Nus as the target for the new TRIX
implementation, primarily because of their availability within RTS, and have brought
the new TRIX implementation to an operational status (Sieber, Goddeau). The
current implementation runs the major UNIX packages and supports software

198

REAL TIME SYSTEMS

development (including the maintenance of TRIX itself). In addition to UNIX
compatibility softwat, , it provides transparent TRIX-oriented network
communications and a primitive window system. While it clearly requires further
development, it currently offers an adequate environment for the development of
software by a community of benign users, and RTS software activities are gradually
moving from UNIX to TRIX. We hope to continue to support TRIX development and
encourage this migration of the user community, allowing us to accumulate
substantive experience with realistic TRIX use during the next lear.

3. MULTIPROCESSOR ARCHITECTURES

The multiprocessor architecture work has seen continued progress on many
fronts. We are finally leaving a long gestation period devoted mainly to tool-buildin-
and stand ready to spend much more time on the basic research. Our work has
been in roughly three areas: hardware construction, software construction, and
performance analysis and modeling. Additionally, we have continued our research
collaboration with Harris Corp., which is beginning to bear fruit.

3.1. Hardware Construction

A major accomplishment during this period has been the completion of debugging
of the RingBus Interface Board, or RIB, a central component of the Concert
multiprocessor being built to serve as a tool in our research (Osborne, Gray,
Robinow, Halstead). Within the next month, several more copies of the RIB will be
produced, and these will allow us to build increasingly larger subsets of the Concert
multiprocessor, up to the planned 32-processor size. Currently, there are four
operational subsections of the Concert machine, which have a!lowed substantial
software development and experimentation to take place, even though the units are
not linked to each other via RIB's, as will soon be the case. The largest of these
units, the "Megatron," contains 8 MC68000 processors and 5.5 megabytes of
memory, and has been operating reliably for a few months.

The Dynamic State Display (DSD) prototype, begun last year, has been completed
(Nuth). The DSD is capable of measuring and displaying in real time various
performance parameters of the Concert multiprocessor, such as the loading and
access delays of the various buses in the system. Use of the DSD has already given
us valuable insight into the performance of various programs, and has confirmed
that, for most of the programs tested. the bandwidth of the Concert communications
substrate has been adequate.

Another piece of performance.monitoring hardware that has been constructed is
the Spektron (Becker, Sterling). The Spektron measures the distribution of
interarrival times between specified events in Concert, and will help us to evaluate
proposed probabilistic models of the behavior of programs on Concert.

199

REAL TIME SYSTEMS

The Concert Display Driver, begun during the Spring of 1983, has been completed
(Osler). A direct-memory-access front end for loading display lists into the Display
Driver has been built and debugged (Nussbaum). The combination of these two
pieces of hardware is capable of displaying continuously changing gray-scale
images on a raster-scan CRT, based on changing display lists computed in real time
by multiprocessor programs running on Concert. Conversion of the display driver
from monochrome to full-color operation is planned.

3.2. Software Construction

Software for the Concert multiprocessor falls into main categories: support and
system software, and programs of direct research interest. Support software
development has continued: notable items include a TRIX-like package for
supporting a message-passing style of computation (Halstead), an improved
debugger (Litman), a UNIX-like file system usable in a multiprocessor environment
(Kitahara, Jenez). an editor, using the Display Driver, for constructing descriptions of
three- dimensional objects (Broadway), and myriad programs for gathering useful
statistics using the DSD (Nuth, Chang, Osborne).

Development of the MultiLisp language for parallel computation has continued
(Halstead, Loaiza). The principal conceptual addition to MultiLisp during the past
year has been the futures mechanism. A future is a token, or place-holder, for a
value that has not yet been computed. When the value is computed, it replaces the
future. In the meantime, if any computation really needs to know the value of the
future, the computation is suspended until the value becomes available. Many
computations that manipulate a value, for example, to store it in a data structure, do
not really need to examine the value, however. Futures provide an opportunity for
extra concurrency in execution by allowing the computation of a value to proceed
concurrently with operations that determine how the value will be used.

Development of MultiLisp has proceeded to the point where there are now over
3000 lines of working code written in MultiLisp, including the MultiLisp compiler
itself, which has been written (using futures) to exploit some amount of parallelism,
though not yet a great deal. Experiments with other, more highly parallel programs,
using the Megatron, show speedups of virtually a factor of eight when eight
processors are used. Measurements using the DSD show only about 20% of the
Megatron's communication bandwidth in use during these experiments, which
augurs well for the potential of MultiLisp when more processors are used.

The Parallel Control Flow (PCF) paradigm for parallel computing has undergone
further development (Sterling). Most of the tools for processing PCF programs are
now in place, including an assembler (Noakes) and a compiler from the language
Simultaneous Pascal (Sieving). An implementation of PCF on the Concert
multiprocessor is now in progress at Harris Corp.

200

REAL TIME SYSTEMS

3.3. Modeling

An analytical study of the performance of the Concert multiprocessor, using
stochastic models of program behavior, is being undertaken by Osborne. A principal
accomplishment to date has been the construction of a model for the RingBus
communication substrate of Concert using Markovian decision theory. Among the
interesting results is the fact that there is no single optimal strategy for granting
access to the RingBus: the optimal strategy depends on the probability of different
kinds of requests arising in the future.

3.4. Industrial Collaboration

The first full year of our collaboration with Harris Corp. has just been completed.
Our partners at Harris have spent most of this period acquiring the necessary
resources and educating themselves about parallel processing. However, several
efforts have been initiated which should bear tangible fruit within the next year:

1) Harris has begun the design of the GCM, a device similar to the RingBus
but based on a crossbar switch (with the attendant higher performance),
which will be at the heart of a version of the Concert multiprocessor
being constructed at Harris for their use;

2) Harris has committed to re-engineering the DSD for production in
printed-circuit form, for their own use and ours; and

3) Harris personnel are already helping with the development of support
software for Concert in several areas.

3.5. Conclusion

The Concert multiprocessor project is finally emerging from a long gestation
period during which necessary resources were accumulated, necessary tools built,
and a critical mass of personnel accumulated. The next year should see many
exciting results that will deepen our insight into multiprocessor software and
architecture, and prepare the way for the design of systems capable of a more
ambitious degree of parallelism.

4. VLSI DESIGN TOOLS

During the past year two major RTS research efforts have addressed the problems
of simulation (Terman) and integrated VLSI design system (Zippel). These projects
are detailed below.

201

REAL PI l_ S (ST EMb

4. 1. Simulation

One tocu s of our r esea-rch Wni k w til, aof~ a CAt) for VLSI AI CUit desi6gn
cofltiniIJC to bie in) the are-a ot sirnolahton. In patmcalar. the. work ieported tel ,ow aims
to increase the canacity of Corrcit .simulaoe looIS through (I) the use ot
multiProceSsors for moret coroPutationol horsepower, and (2) a re'duction of
simulation Overhead by compiling in line codt whore possible before starling
simulation. E ach of these arc-as is discuss ed in) ")oic, dtall below.

in prc~vious years, we have rep~orted oIn RSIM (fTcrmon), cil ovc nt drrvc.. !hgic, level
Simulator for integrated circiut des0igns rrrcorpoILt)M atiiia vury Ofcttcert lineoar uietwor k
model. HSIM has seen increasing usc' ou-tSide tii,. MI! (-nmiruity. and is now the
major logic level simulator at many university and industrial locations. Versions of
this simiulator are included by Berkele1 and the Univoersit ot hsigo as part at
their CAD tool distributions. Feedback from new users hasi, lcd to iniptovmerots im
the the basic timing calculations, the user inter face. and the ;por ltbty Of the
implementation. A major revision of RSIM incmiporitinq these; Impr ovemrents is
scheduled fur release in August 1984.

Parallel Simulation of Digital LSI Circuits: k lprOeso ytesae
btecroming availa)ble at m-rany orgaInizations lnvolved ifLS circuit design. The Se
S~stomb rainge Iioun i naintrzrnes ando workstti r ion; loou ely coioaed tv local inca
notworks, to dedicated system~s ot processors tKIgtirY ld through shared
memnory The. goat of the work deser c~bed in this sectioni iF to develop logic level
simula'-tion algorifhors which j ca' n take advantagfe of a mtlrpr ocessor systemn to
imp ve simulation S!.)(20d Ind caipacity. This w&oik complemnents the investigation
now under way elsewhere (most rmtabty Berkeley) of nrulipnacossor implementations
ot lowter level circuit analysis programs. 1akeii togetht-i . thesor etfoi Is hold the
promise of I multi level sirooiivepx~iwth truoly renxiW.btle pecrformwance.

The initial goat of ou~r work (I er marl, ArnoJd) is to iUild al rrltiprocessor
im olem ertaliri at the HSIM alg on thniis. U iver) the wido y ~ii Cl Of fi i tt iprocessor
systemis available. spccmal care is beirri taken In ensure that the rpilrikrrtlitiori uses
a sinipole (and hopeflly urriv(?r sal set ot trtr vesc mni tion prirriitives.
Work en the project has just rc-ceritl gotten unewy re illy. line' aito three

idriitt u bpr ojects:

1) Convt7.rsion of tI(, RSIM adlgorithmns to use only' li\ d point integer
arithmetic (Ar rild) Since rrany of the rnlirae sincorporate
("PUS te q , the, kK('680l)) that do not sopp Irt flouting en iow lclt in
dirfectly, this ;n portant Step ensitires thait no greait pertoarnance less is
incur red simply beccause of moving nut of the VAX envir in' ciewnt. M~e 32-
nt 'arithmetic provideri bV mos;t CPUS Owl nenvri djeca'des of
dynaicw range enough to represent the electrical0 tiarcxiii l(rs it) ..hich
we arc interested.

202

REAL TIME SYSTEMS

References

1. Batali J. and Hartheimer. A. "The Design Procedure I.anguage Manual,"
MIT Artificial Intelligent Laboratory, Cambridge, MA, 1980.

2. Horowitz, M.H.. Penfield, P. and Rubinstein J. "Signal Delay in RC Tree
Networks," IEEE Trans- on CAD, CAD-2:3, (1983), 202-211.

3. Katz R.H. "Managing the Chip Design Database," Computer, 16:12,
(1983) 26-36.

4. Minsky. H. "A SCHEMA Interface for Signal Specification," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

5. Moon D.A. and Weinreb D.L. "Lisp Machine Manual," MIT Artificial
Intelligence Laboratory, Cambridge, MA, 1982.

6. Rose M. "A Datapath Generator," S.B. thesis, MIT Department of
Electrical Engineering and Computer Science. Cambridge, MA, June
1982.

7. Williams. B. "Qualitative Analysis of MOS Circuits," Joturnal of Artificial
Intelligence. submitted for publication.

8. Zippel R. "Capsules," SIGPLAN Bulletin, 18:6, 166.169, 1983.

Publications

1. Dertouzos, M.L. "Software Technology and Computer Architectures by

2000 AD." Proccedings of the National Academy of Engineering. 19th
Annual Meeting, Washington. DC, November 1983. to appear.

2. Dertouzos. M.L.. Arvind and R. lannucci. "A Multiprocessor Emulation

Facility," MIT/LCS/TR-302, MIT Laboratory for Computer Science,

Cambridge, MA, October 1983.

3. Dertouzos, M.L. and Moses. J. "Coherence," MIT, Sc;,ool of

Engineering. Project Athena, Cambridge. MA, September 1983.

4. Terr~an. C.J. "RSIM • A Logic.Level Timing Simulator," Proceedings of

the IEEF Intornatnnal Conhrence on Computer Dc. iqn: VLSI it)

Computers. Pert Chester. NY, Novembe 1983, 437 440,

216

FLAL TI Ai , MOS

mCloct f !L:Ir is to rea-Iqri;ze inputs reliably for that individual. The programi
efrriurates thre behavor of a nletwor k of simple finito st~ite machines, which first

tract ci ,t fbdiic feoata CS in th, elrin of a Str in, -if symibols fromi a diSCretLe, finite
a p 'lphhf for each input character. and~ then compress the representation to yield a
string v. hich uiniquely identitieS the inlput. The- compression can be considered to be
,-!i jist action since this step allows recognition of characters whose input features
(to not exactly match that from whicth the compressed string was derived. This step
enurmously compresses the amount of data that must be stored and searched to
pcrtm1 the recognition task rolirably. Althou~gh this research on hand-printed

har af-ctcr r(ncogn f~linn mo;, sorfie--day lead to a use ful end product, the primary
p (VOO' Of loIS effort 1c. to study and(experiment with various aspects ot the
to rir;Urr nenf!Il rmachine lea-rning/pattern recognition miodel used here which is based
orn s,,mrho-l proussirig rather than signal processing.

REAL IME StS EMS

Capsule system is a partially successful attempt to provide mechanism through
which the programmer can truly express what the program is intended to do.

5. STUDIES IN MACHINE LEARNING

Exploration of bases for nonstandard computer architectures (Goblick, Ward) has
led to an interest in machine learning, i.e.. systems which can improve their
performance with experience when the desired system responses are presented
together with the inputs. A universal goal among researchers in machine learning
seems to be to emulate the powerful learning mechanisms of biological organisms,
especially the higher forms like man. This image leads to the study of computing
machines built using a large number of simple computing elements, each only
moderately reliable, but all intricately interconnected to result in excellent overall
system performance and reliability. One can imagine VLSI chips containing large
arrays of identical, simple, neuron-like computing elements which are not
programmed in the usual way, but are 'trained' by example to establish the proper
interconnections between elements to perform specific tasks. One exampie of this
approach is that of an associative memory to recognize patterns represented as
vectors whose coefficients correspond to different features. The associative
memory can be constructed out of a large array of identical, simple processors to
compute the dot product of an input vector with each of the set of stored vectors in
the memory.

While this image is appealing to learning theorists, it is tantamount to putting the
cart before the horse by asking, "What sort of interesting learning tasks can be
performed by machines composed of arrays consisting of certain kinds of computing
elements?" The problem is that the theory of computation has little to say about
models of computation that are complex enough to represent machines composed
of such 'malleable' arrays of processing elements. Another approach is to first
devise algorithms which perform a certain learning/recognition task adequately, and
then consider separately the implementation of these algorithms in hardware and/or
software, taking into account the constraints of available circuit and chip
technology, machine architecture and software. The advantage of this approach is
that devising working algorithms can be done independently of the technology used
to implement the final solution. The disadvantage is that the algorithms may fail to
meet desirable implementation criteria, such as the exploitation of massive
parallelism.

To obtain some concrete experience in machine learning, a model was formulated
and programmed for the computer recognition of hand-printed English characters
(letters and numerals). This program. running on a T.I. Nu Machine, is 'trained' by
an individual user who enters hand-printed characters via the mouse, together with
the desired machine response for that character (entered via the keyboard), until the

214

REAL TIME SYSTEMS

merely moves the mechanism we are discussing into the compiler. This is the
fundamental difference between the Lisp Machine's flavor system which takes the
object oriented viewpoint, and CLU which is function oriented.

By an object we will mean something to which a message can be sent. This will
result in one (or more values) being returned and the internal state of the object
being changed. The action caused when a message is sent to an object is called an
operation. A message is a string used to name some operation. It contains no
internal structure. The piece of code executed when a message is sent to an object
is called a method. Objects may also contain internal state which is kept in instance
variables that may be referenced by the methods.

Every object belongs to a class of equivalent objects that have the same methods
and the same set of instance variables. This equivalence class is called a collage.
Objects are created by calling the function MAKE-OBJECT on a collage. The
methods are actually part of the collage, so as operations are added to the collage,
the instances of the collage also acquire them.

The specification for how a method is to be constructed is kept in a structure
called a capsule. When a capsule is added to a collage, the code within the capsule
is incorporated in one or more of the methods of the collage. Capsules also contain
information describing what their pieces of code expect of the collage to which they
are added (what operations and instance variables there are, for instance).

When the user creates a collage, he or she specifies a protocol that the instances
of the collage must satisfy. The Capsule system is then responsible for determining
which capsules provide the fragments of the protocol desired and which also fit
together. It then combines these capsules to form the desired collage. Thus in the
capsule system, the user specifies what the desired functionality of the objects to be
created and the system decides on the implementation. This greatly simplifies the
programmers work since there are far fewer concepts than implementations of
concepts, and also because it allows different programmers to build on each others
work far more.

When the capsule system was used to describe a portion of the stream code used
in the Lisp Machine, we noticed that the protocol sp, -ifications seemed more
verbose than we would have liked. Closer examination revealed that many of the
comments we had penciled into the version of the code that used flavors were being
translated into protocols. This reinforces our impression that the capsule system is
partially an attempt to force the programmer to make the code that is written more
precise.

We feel that if the programmer makes this effort, the programming system will be in
a much better position to aid in the development of large software systems. The

213

REAL TIME SYSTEMS

synthesis modules of Schema are expected to rely heavily on the database tools for
organization and the analysis tools for validation and guidance. In addition, the
results of the synthesis modules include behavioral descriptions to guide analysis
and correction and as guidance for lower level synthesis modules. In this section we
will describe the basic organization of some of the topological synthesis tools.

The lowest layers of the synthesis layer consist of many small specialized modules
that convert higher level specifications into augmented designs. An example of this
sort of module would be a buffer generator. The parameters tiat govern the design
of a buffer are the input and output level, noise margins, power consumption, input
and output capacitances, rise and fall times, etc. All of these parameters can be
specified at different process corners. Many of these parameters, like nominal noise
margins. are inherited from the overall design specification. Given a subset of these
parameters, the buffer generator would attempt to chose a topology and size the
devices to meet the specification. The synthesis module may need to perform
simulations to make these decisions, for instance, to evaluate the impact of Miller
capacitances in some circuit, or to adjust the device sizes using a more accurate
device model than is used in the initial synthesis steps. In a very real sense this
module would be an expert in buffer design.

A slightly higher level expert would convert register array specifications (word size,
depth, cycling and power considerations) into a high performance, correctly
margined register array. Other experts will deal with programmed logic array (PLA),
general combinational logic and arithmetic logic unit design. The existence of the
analysis modules, buffer designer and similar experts raises the semantic level at
which these higher level synthesis modules are specified.

Combining a number of these tools, a datapath and microcode generators could
be built. At the highest level, "silicon compilers" can be constructed based on the
abstractions provided by the low level "experts." They are responsible for balancing
the performance/power/noise considerations among the various components.

4.3. Capsules

The Capsule system is progress;ng quite well. A preliminary implementation has
been completed by Ramin Zabih and it is being used to build a simple algebraic
manipulation system this summer. We expect to refine the ideas and implementation
significantly in the next few months and should have a more generally usable
implementation available by the end of the calendar year.

In the capsule system we have assumed that all actions occur by sending
messages to objects-this is the object oriented viewpoint. Taking the dual point of
view, where objects are passive and the correct function is chosen by the compiler,

212

REAL TIME SYSTEMS

Analysis Layer: The second layer, the analysis layer, contains those tools that
ext act information from a design. In addition simulators like Spice and RSIM,
design rule checkers and circuit extractors we include those modules that extract
higher level semantic information from designs. This includes those tools that
combine behavior information with simulation results to determine how a design
component failed. These tools produce answers like: The pullup does not supply
enough current, and the state machine was not reset at the beginning of each major
cycle. Intelligent front ends to design rule checkers are also needed. Given the
circuit topology and masls together, they can do a better job dealing with mom
complex design rules like current or voltage sensitive rules, and they can give a far
better characterization of what went wrong. Rather than a dozen spacing rule
violations, it should be possible to indicate that two cells are too closely spaced.

In addition, the knowledge contained in these tools may be used to constrain or
determine details in the design. For instance, tools that convert DC currents and
voltages to device sizes use the same models and similar organization as do tools
that compute DC currents and voltages, In particular, certain components of
generic circuit optimizers and retiming tools might be components of the analysis
layer.

We have designed a DC analysis module that allows the designer to specify DC
electrical parameters (voltages, currents, power, noise margins) which the system
will use to deduce initial values for device sizes. In addition it will derive these DC
parameters from a completely sized schematic (with the help of SPICE). Naturally,
as the design is polished This has two advantages. First, topological specifications
are insulated from process variations. And second, although the initial device sizes
may be modified as the design is polished the Schema has available detailed
electrical information about the intent of the designer which can be used to validate
the final design.

This particular approach involved developing a small computer algebra package
for manipulating systems of algebraic constraints, which was done. In order to
check out the package a slightly simpler problem was addressed determining the
voltage transfer function a linear system. the result is a package that allows the
designer to graphically specify a circuit involving linear components; resistors.
capacitors, inductors and operational amplifiers. The Schema can then compute the
symbolic voltage transfer function and when asked will generate Bode and Nyquist
plots for particular values of the parameters of the devices. This educational tool
was put together with two weekends, and indication of the speed with which
interesting projects can be done using the software organization uscd in Schema.

Synthesis Layer: Much of the interest in new style design tools has
concentrated on synthesis modules since these actually create designs. The

211

REAL TIME SYSTEMS

the wires are either horizontal or vertical, when devices are moved it makes sure that
wires don't end up with negative length, and it ensures that there are no dangling
wires. When a module is deleted, the wires connected to it are also deleted. In
addition, when running wire between two points, devices can be inserted into the
wire with a single mouse button. These facilities allow the designer to sketch
schematics quite quickly, in much the same manner as they do on paper and with
much cleaner and reliable results. The designers who have made use of the system
have generally been quite happy with it and consider it comparable to hand
sketching in speed.

Regardless of how the schematic is modified, when the procedure is examined it
always reflects the schematic. Ideally, everything that is expressible textually would
be easily expressible using the graphics editor. Though this is difficult, we are
attempting to get as close to this goal as possible. The Daedalus system provides a
similar interface to DPL for mask design. Our collaborators at Harris, Corp. are
currently adapting this mask design system using the tools in Schema in anticipation
of its incorporation. This will also give us the opportunity to incorporate the routing
and compaction work of Rivest and Leiserson into the mask level data structures and
procedures. We expect to include structures like self routing channels and switch
boxes in the basic library.

Finally, there must be some long term storage system. This storage system must
be reliable, allow multiple designers to access the same design component
simultaneously and yet provide inierlock mechanisms to ensure designers do not
interfere with each other. Katz [3] has discussed some of the issues involved in such
a system. Our needs and constraints are slightly different since the active portion of
the database is always kept in the virtual memory of a Lisp Machine, and among our
concerns is the effective cooperation of possibly isolated designers. The long term
storage system is a repository for all aspects of the design, schematics, simulation
results, floorplans, layouts, architectural sketches, textual notes about the design,
and anything else the designer might provide.

The current design for the long term storage system provides each designer with
his or her own hierarchy of projects. A project is some major design, typically a chip
or system. Projects contain schematics, circuits. simulation specifications and
results, floor plans, mask descriptions and so on. In general, more than one
designer works on a project at a time. The hierarchy of each designer contains an
entry pointing to the project itself. Two approaches are being taken to make the
hierarchy more permanent-a somewhat complex file server that takes care of the
necessary locking and coordination mechanisms and the more fundamental
approach of directly addressing the problem of stable storage of Lisp expressions.
Though we are leaning towards the second solution as being the correct solution in
the long run. the modified file system will also be implemented tor pragmatic
reasons. This work is being pursued by Jeff Eisen.

210

REAL TIME SYSTEMS

discrete, possibly non-numeric values, are used for digital signals and symbolic
quantities are used for higher level signals. The waveform bounds developed by the
techniqucs of Rubinstein, Penfield and Horowitz [2] can be represented by using
open sets as the waveform values. Allowing open sets for time coordinates permits
us to represent the qualitative quantities needed for behavioral description [7].

The topological, waveform and physical representations are all specified by a
procedure as was done in DPL [1]. When this procedure is invoked it creates the
appropriate data structure. Arguments can be passed to the procedure to control
the creation of the data structure in any way desired. Since the procedure is merely
a slightly stylized Lisp program, it can perform any computation desired to determine
what sort of structure to build. Arbitrary (local) intelligence can be placed in this
procedure to create relatively intelligent synthesis modules. For instance, Mark
Rose has built a simple ALU generator module that chooses the carry propagation
scheme based on the word length and speed requirements specified by the designer
[6].

This technology is used not only to specify topological structures, but also to
specify waveforms. In conjunction with a constraint system provided by Schema,
this provides an extremely powerful way of specifying both the inputs and outputs of
simulations, especially when difficult extremes of processing (called processing
corners) must be taken into account. In combination with the waveform bounds and
qualitative structures mentioned above, the procedural capabilities are an
exceedingly powerful mechanism for describing the behavior of circuits.

The procedural specifications of circuits, waveforms and other structures can be
tedious. A graphics system has been developed for the circuit language that allows
this procedure to be specified by drawing the circuit's schematic. The schematic
entry system itself is rather interesting. We feel that unless designers find it easier to
enter schematics using Schema than sketching them on paper, they would shy away
from the system and would delegate its use to draftsmen, wasting all of the design
knowledge that Schema contains.

The basic interaction mechanism of the schematic entry system is similar to that
used by Daedalus. The designer uses a three button mouse to for almost all actions.
The function of the three buttons can be modified by depressing any combination of
four shift keys. A black bar just under the schematic display is kept constantly up to
date with the function of each button on the mouse. The eliminates the need for the
designer to go to a menu to select an object or issue a command. Furthermore, the
designer rarely moves his hands from this basic position: right hand on the mouse,
left on the shift keys.

The schematic entry system understands a certain amount about how schematics
are supposed to look. For instance, it moves devices if necessary to ensure that all

209

REAL TIME SYSTEMS

Thus far, the design of Schema has concentrated on the topological domain. This
is the area that is least thoroughly explored and where we intend to apply our
knowledge engineering techniques first. Most designs begin with topological
specifications and elaborate them into physical specifications, so it is reasonable to
begin here. Our colleagues at Harris Corp. are study the physical domain now, and
we plan to bring the two pieces of Schema together at the end of this summer.

Schema is implemented in three basic layers. The database layer contains the
data structures used to represent pieces of designs and design processes. It
provides the primitive operations needed to manipulate and manage design objects
in a consistent manner. The analysis layer contains those routines that extract
information from a design object: simulators, design rule checkers, feature
extraction tools, etc. Those tools that create design objects are contained in the
synthesis layer. Each of these layers is discussed in the following subsections.

Database Layer: The data base layer provides basic tools for building a large
variety of structures used in integrated circuit design. The basic data structures are
built using the Lisp Machine's flavor system [5] way that anticipates the Capsule
system [81. This fundamental choice gives us more modularization flexibility than
any other programming technique available. In particular, it allows us to build the
knowledge in layers, out of small modules, without significant performance
penalties. The flavor and Capsule systems collapse the layers automatically. We will
be revamping the existing code using Capsules during the next year to eighteen
months.

A number of different facilities are needed to build the data objects of a VLSI
design system. Among them are prototypes, hierarchical structures, and
incremental creation (creation on demand for very large structures). We have built a
library of flavors that implement these facilities in a modular, reusable and efficient
fashion. Along with a large collection of other utilities, we have used these flavors to
build circuit and waveform representations (41, the directory structure used to
manage projects and the graphics presentation structures for schematics. This
philosophy of constructing small flavors (Capsules in the future) that implement
basic software concepts is being followed throughout the design of the system, and
has already allowed us to leverage our software efforts quite effectively. We expect
the library of these facilities to increase dramatically as mask level structures are
introduced.

The existing structures for circuits and waveforms are general enough to deal with
circuits not only at the transistor level, but also at the gate level, at the register
transfer level and at any higher level where the computational structure can be
expressed as a graph of communicating modules. Waveforms with any value set can
be represented. Real numbers are used to represent analog voltages and currents,

208

RLAI TIME SSTEMS

the analysis job. Additional software is required to determine the tailurre mechanisms
from the simulation results using the behavioral speciticat ions.

If the analysis routines uncover deviations from the specitied behavior. correction
modules are responsible for modifying the design (including the behavioral
description) to come closer to the desired behavior. It the problems are sufficiently
bad, the original specification itself may need to be modified. In simple cases, where
modifications are device size adjustments or other well understood changes,
software tools will be provided to close the loop. In general though, we leave the
correction phase to the humans. This is one aspect of design that is extremely
poorly undei stood and where human creativity can be best exploited.

This general iteration structure may be repeated at several levels by the designer-
each loop refining one aspect or level of the design. The analysis routines may
indicate fundamentally insoluble problems with the specifications, in which case the

designer would have to undo some higher level decisions previously thought to be
correct.

Synthesis modules make use of this structure to converge to device sizes or to
determine the basic topology or floorplan of a circuit. Such a synthesis module
would use simplified correction modules as a heuristic means of generating
solutions to design problems. In sufficiently well understood situations, the heuristic
correction module might be completely adequate in which case the designer would
need never be bothered by the correction phase.

We have divided the design of integrated circuits into two domains: topological
design and physical design. Each of these domains can be explored at multiple
levels of detail. At the higher abstraction levels (low detail), topological design is
concerned with architectural/functional specifications, register transfer descriptions
and logic design. At the lowest abstraction levels topological design deals with the
particular transistor topologies used to implement logical functions and the detailed
electrical circuit design issues of the chip. The physical domain has a similar
hierarchy. At the highest abstraction level, we are concerned with pin count, power
utilization and speed. At lower levels, the concern moves to floor plans, power grids
and other global organizing structures. At the lowest abstraction levels, our
primitives are sticks representations or detailed mask specifications.

In our observations of real designers we have observed that they spend a large
amount of time going back and forth between the different design domains, refining
the design a bit at each step. One of the biggest problems in design now is that
designers are not able to move between the domains quickly enough. Thus bad
interactions between the domains or misconceptions between the different designs
are not discovered until the final layout-very late in the design cycle.

207

REAL TIME SYSTEMS

management tools for VLSI design. Second, the internal structures and procedures
are organized to match as closely as possible designers' semantics. Third, there are
mechanisms to capture the designer's intent and where possible, all system initiated
inquiries of the designer ask for the designer's intent, not how to solve the problem
at hand. Finally, all tools are organized to so they can be easily used both by higher
level tools as well as by designers. The following paragraphs give the basic user
interaction model for Schema and illustrates the type of tools that make up Schema.

Specification

[Synhesi i ICorrection 1

DesgnAnalysis

Behavioral Information

Figure 13-1: Interaction with Schema

Figure 13-1 gives a view of the designer's interaction with Schema at some level in
some design domain. The designer initially provides a specification of the desired
module. A synthesis module converts this specification into a design. Designs
consist of a detailed topological or geometrical specification and a behavioral
description-the synthesis module's intent. The behavioral description indicates how
the components selected and connected by the synthesis modules are intended to
satisfy the designer's original specifications.

By using simulation or some other checking mechanism, the analysis modules
attempt to verify that the design meets the designer's original goals, as specified to
the synthesis module or otherwise made known to the system. If the design does not
meet these goals, the analysis tools are expected to indicate the components that
did not meet their behavioral specifications and in what way they caused the overall
design to fail. Most existing simulation tools (e.g. Spice, RSIM) perform only part of

.206

REAL TIME SYSTEMS

third value "X", or "unknown". If an expression evaluates to true, the
corresponding path exists; if the expression evaluates to false, no path exists. Since
nodes can have X values, expressions involving node values can evaluate to X; in
this case, the corresponding path may or may not exist. The values of the four node
equations can be combined in a simple way to determine the final logic value of a
node. In other words, all information about paths in the original network is now
stored in the node equations, where it can be efficiently utilized.

Some circuit configurations have very simple connection paths during actual
operation of the circuit, but the circuits can appear very complicated when no
information is known about the values of various control lines. This is especially true
of a circuit containing mosfet switching logic, such as a barrel shifter or tally circuit.
The logic equations for a node in such circuits can become very large - in some
cases, large enough to be impractical. The compiler monitors the size of the
equations under construction; if they grow too large, the compilation is aborted and
the node is flagged. At simulation time, the value of a flagged node is determined
using the normal switch-level simulation algorithm. Using this technique, the speed-
up in simulation afforded by the use of logic equations can be enjoyed by circuits
even where 100% conversion to equations is not possible. Here we see one of the
advantages of a general-purpose computer over special purpose simulation
hardware: reversion to ordinary switch-level simulation for especially complicated
circuits is easily accomplished by general-purpose computers, but can be next to
impossible for special-purpose hardware.

A prototype implementation of ESIM2 was built during the last year, and its
performance compared to that of the original ESIM simulator. ESIM2 was found to
be 50 to 100 times faster. Interestingly, the more complex the circuit, the greater the
speed-up; a not entirely unexpected phenomenon since the cost of re-examining the
network in the original simulator grows rapidly as network complexity increases.
The increase in performance provided by ESIM2 should permit the simulation of
substantially larger circuits than before possible.

4.2. Schema Developments

Schema is an integrated environment for doing VLSI design. By providing
canonical representations (for circuits and waveforms), interfaces and other support
tools, it serves as a shell into which a large number of different electronic design
tools can be plugged. It is, in a very real sense, an operating system for electronic
design. In this section we describe a bit of the Schema philosophy in addition to
mentioning the progress we have made in actually building the system.

There are four basic tenets behind the organization of Schema. First, Schrma
provides a coherent and cohesive set of data structures, databases and database

205

REAL TIME SYSTEMS

(e.g., command interpretation, access to the network data base, model evaluation),
and their performance suffers as a result. Happily, much of this overhead can be
eliminated through the application of traditional compilation techniques. This is the
theme of this section, and the motivation for the development of ESIM2 (Terman), a
combination compiler/simulator. ESIM2 compiles a network into a set of simulation
subroutines, one for each strongly connected subnetwork (i.e., pieces of the network
connected through one or more mosfet source/drain connections). Each
subroutine computes the new value of one or more nodes from their old values and
the values of other nodes in the network. While performing the same simulation
calculation as earlier switch-level simulators, these subroutines arrive at the answer
much more quickly - performance improvements of two orders of magnitude are
typical. There has been much interest recently in special purpose hardware for
simulation (e.g, the IBM Yorktown Simulation Engine, and the Zycad Logic
Evaluator). It may be that such developments are premature, and that substantially
better simulation performance can still be obtained from general purpose
computers.

The switch-level simulation algorithm incorporated in RSIM determines the value of
a node from information about the node's current connections to VDD and GND.
The information is re-gathered each time a new value is calculated for the node. In
most cases, only a small number of potential paths exist from a node to VDD or GND.
This suggests that it might be economical to determine ahead of time the conditions
for which a path exists to, say, GND. For example, the output of a NOR gate with
inputs A and B is pulled down if either A or B is non-O. The existence of a pulldown
path can be determined by evaluating the expression "A or B"; a search of the
network is not required to discover which pulldowns are currently conducting.

ESIM2 builds a set of four equations for each node in the network:

DHA An expression indicating under what conditions a path of
conducting n-channel and/or p-channel devices exists from
node A to VDD.

DLA An expression indicating under what conditions a path of
conducting n-channel and/or p-channel devices exists from
node A to GND.

WHA Same as DHA except the path contains at least one depletion
device.

WLA Same as DLA except the path contains at least one depletion
device.

The equations involve ordinary Boolean operations, extended to accommodate a

204

REAL TIME S'STEMS

2) Partitioning the network among the available processors (Terman).
Traditional static partition methods (e.g., min-cut) can be used to ensure
that interprocessor communication is kept to a minimum. However,
partitions built in this way often result in an unbalanced simulation load,
where a few of the processors are responsible for a bulk of the
simulation computation. A pseudo-dynamic partitioning scheme is
under investigation. Here a short simulation of the whole network is
metered to determine which subnetworks are the most active. This
information is used to weight each subnetwork, and the static
partitioning technique is augmented to minimize communication costs
subject to the constraint of keeping the total weight of each processor
more or less equal.

3) Integrating the interprocess communications with the local simulation
algorithm (Arnold). The naive event-wheel implementation of the RSIM
algorithm introduces an unwanted synchrony between processors since
simulated time cannot advance on a particular processor until it is sure
that it will not receive any more incoming events for the current
simulated time. Thus all processors would run in lock-step; since the
simulation calculation is relatively short, the communication overhead
would be large, thus obviating many of the advantages of parallel
simulation. To ease this constraint, we are proposing to implement a
checkpoint/rollback scheme for event handling. Every so often the
state of the event queue and each network node is saved. Whenever an
event arrives which is to be scheduled for a time earlier than the current
simulated time, the simulation state is restored from the latest
checkpoint earlier than the new event. The new event can then be
scheduled normally, and simulation proceeds. A periodic global
synchronization keeps the storage associated with checkpoints within
manageable proportions.

The initial implementation is for the Concert multiprocessor, made available to us
under the offices of Prof. Halstead. We also anticipate running some experiments
with our network of Texas Instrument NU machines, which will allow one to compare
the performance tradeoffs between a loosely-coupled environment with the tightly-
coupled Concert environment. Finally, both Harris Corporation and BBN hav6
volunteered time on their multiprocessors, which will allow us to transfer our
technology outside of MIT.

Simulation Using a Pre-compiled Network Model: A major motivation for new
simulation technology is the desire to improve simulator performance. It seems that
digital computers ought to be well suited for the simulation of digital logic.
Unfortunately, current simulation schemes involve several layers of interpretation

203

REAL TIME SYSTEMS

5. Ward, S. "Present Status and Future Trends of Personal Computers,"
Proceedings ol JEIDA '83, Tokyo, Japan, October 1983, to appear.

Theses Completed

1. Antaki, P. "A Circular Pipelined Bus Architecture," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

2. Bedonian, A. "A Microcoded Arithmetic Engine for Computer
Graphics," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1984.

3. Broadway, E. "A Three-Dimensional Graphics Editor," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

4. Burger, E. "MOS Simulation Techniques," S.B. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA, June
1984.

5. Chiarchiaro, W. "Data Transmission via FM Radios and Protocols for a
Packet Radio Network," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

6. Cosway, P. " A Multilevel Memory and Interface for Display Terminals,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, January 1984.

7. Hood, P. "A Real Time Development System," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

8. Gilbert, A. "A Critique of the SmallTalk-80 Graphics System," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Camoridge, MA, May 1984.

9. Goddeau, D. "A Multiple Processor Implementation of the TRIX
Operating System," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, September 1983.

10. Mercier, J. "Performance Analysis of the UNIX Operating Systems,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, September 1983.

217

REAL TIME SYSTEMS

11. Miller, J. "A Polyphonie Digital Music Synthesizer With Real-Time
Computer Control," MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1984.

12. Minsky, H. "A SCHEMA Interface for Signal Specification," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

13. Noakes, M. "An Assembler for PCF," S.B. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, May
1984.

14. Pasieka, M. "An Examination of Architectures for Interfacing to the
NuBus," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1984.

15. Pezaris, J. "INAD: An Intelligent Automated Dialer," S.B. thesis,
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1984.

16. Osborne R. "Modeling and Evaluating the Performance of the Concert
Multiprocessor," S.M. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, May 1984.

17. Sieber, J. "TRIX: An Operating System Supporting Network
Communications," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, Septrmber 1983.

18. Sterling, T. "Parallel Control Flow Mechanisms for Dynamic Scheduling
of Tightly Coupled Multiprocessors," Ph.D. dissertation, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA,
January 1984.

19. Stewart, W. "A Solution to a Special Case of the Synchronization
Problem," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, September 1983.

20. Terman, C. "Simulation Tools for LSI Design," Ph.D. dissertation MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, August 1983.

21. Vance, J. "A Lisp to MultiLisp Compiler: Installing Cost-Effective
Parallelism," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1984.

218

REAL TIME SYSTEMS

22. Wade, M. "A More Efficient Video Display Terminal Management
Scheme," MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

Theses in Progress

1. Masterson, A. "A Distributed Graphics System for the Nu Machine,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, Expected June 1985.

2. Robinow, D. "A Window System For Trix: A Network-Oriented Operating
System," MIT Department of Electrical Engineering and Computer
Science,Cambridge, MA, May 1984.

3. Teixeira, T. "Compiling Programs to Meet Performance Requirements,"
Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, Expected September 1984.

Talks

1. Dertouzos, M.L. "Networked Computer Systems: Issues and Trends,"
MIT Industrial Liaison Program Symposium, Cambridge, MA, May 14,
1984.

2. Dertouzos, M.L. "Software Technology and Computer Architectures by
2000 A.D.," National Academy of Engineering 19th Annual Meeting,
November 2, 1983.

3. Dertouzos, M.L. "Knowledge Base and The Fifth Generation,"
Technology Transfer Institute, Arlington, VA, November 1983.

4. Dertouzos, M.L. "Long Term Trends in Information Technology," Harris
Corporation, Melbourne, FL, September 1983.

5. Dertouzos, M.L. "Computer Tribes and Computation by the Yard: The
Emerging Multiple-Processor Revolution," EECS Colloquium, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, March 5, 1984.

6. Dertouzos, M.L. "Tomorrow's Exciting Information Technology," Analog
Devices General Technical Conference, Boxborough, MA, March 20,
1984.

7. Dertouzos, M.L. "American Industry and the University: New

219

REAL TIME SYSTEMS

Possibilities for Hi-tech Cooperation," Japan Society, New York, NY.
April 6, 1984.

8. Halstead, R.H. "MultiLisp: A Language for Symbolic Computing on
Parallel Machines,"

N.Y.U. Courant Institute of Mathematical Studies, NY,
September 1983.

Lawrence Livermore National Laboratories, Livermore, CA,
October 1983.

University of California at Berkeley, Berkeley, CA,
October 1983.

Carnegie-Mellon University, Pittsburgh, PA, January 1984.
Siemens A.G., Munich, W. Germany, March 1984.
Bell Laboratories, Holmdel, NJ, April 1984.

9. Terman, C. "RSIM - A Logic-Level Timing Simulator," IEEE International
Conference on Computer Design; VLSI in Computers, Port Chester, NY,
November 1983.

10. Ward, S. "Present Status and Future Trends of Personal Computers,"
JEIDA '83, Tokyo, Japan, October 1983.

11. Ward, S. "Computers, Communications, and Coherence," Siemens
A.G., Munich, W. Germany, March 1984.

12. Ward, S. "The TRIX Distributed Operating System and Tomorrow's
Personal Computers," ILO Symposium on Networked Computer
Systems, MIT, Cambridge, MA, May 1984.

13. Zippel, R. "Introduction to the Lisp Machine: Part I" MIT Laboratory for
Computer Science, Cambridge, MA, March 1984.

14. Zippel, R. "The Design and Analysis of High Performance MOS
Circuits," MIT Department of Electrical Engineering and Computer
Science Colloquium, Cambridge, MA, April 1984.

15. Zippel, R. "Introduction to the Lisp Machine: Part I1" MIT Laboratory for
Computer Science, Cambridge, MA, May 1984.

16. Zippel, R. "Circuit Design Using Schema," MIT Spring 1984 VLSI
Research Review, Cambridge, MA, May 1984.

220

REAL TIME SYSTEMS

17. Zippel, R. "Architectures of Artificial Intelligence," Sikorsky Aircraft,
Stratford, CN, May 1984.

221

SYSTEMATIC PROGRAM DEVELOPMENT

Academic Staff

J. Guttag, Group Leader

Research Staff

D. Detlefs

Graduate Students

R. Forgaard K. Yelick
R. Kownacki J. Zachary
R. Richards

Undergraduate Students

R. Robbins M. Walters
S. Subramanian

Support Staff

E. Pothier

Visitors

P. Lescanne J. Remy

SYSTEMATIC PROGRAM DEVELOPMENT

1. INTRODUCTION

Over the last year the Systematic Program Development Group has worked on two
related projects, the Larch Specification System and the REVE Rewrite Rule
Laboratory. The work on Larch has been supported primarily by DARPA, and the
work on REVE primarily by the NSF.

2. LARCH

2.1. Summary of Status and Plans

The Larch Project is developing tools and techniques intended to aid in putting
formal specifications to productive use.

The central component of the project is a two tiered approach to specification and
a family of specification languages to support this approach. Each Larch language
has a component derived from a programming language and another component
common to all programming languages. We call the former interface languages. and
the latter the shared language.

We use the interface languages to specify program modules. Specifications of the
interface that one module presents to other modules often rely on notions specific to
the programming language, e.g., its denotable values or its exception handling
mechanisms. Each interface language deals with what can be observed about the
behavior of programs written in its programming language. Its simplicity or
complexity is a direct consequence of the simplicity or complexity of the observable
state and state transformations of the programming language.

The shared language is used to specify abstractions that are independent of the
programming language. These abstractions are used within specifications written in
the interface languages. The role of shared language specifications is similar to that
of abstract models in some other styles of specification.

We have completed the design and documentation of the Larch Shared Language
[4][5]. We have also designed an interface language for CLU.

2.2. The Larch Family of Specification Languages

Some important aspects of the Larch family of specification languages are:

* Composability of specifications. We emphasize the incremental
construction of specifications from other specifications. Larch has
mechanisms for building upon and decomposing specifications as well
as for combining specifications.

224

SYSTEMATIC PROGRAM DEVELOPMENT

" Emphasis on presentation. Reading specifications is an important
activity. To assist in this process, we use composition mechanisms
defined as operations on specifications, rather than on theories or
models.

" Interactive and integrated with tools. The Larch languages are designed
for interactive use. They are intended to facilitate the interactive
construction and incremental checking of specifications. The decision
to rely heavily on support tools has influenced our language design in
many ways.

" Semantic checking. It is all too easy to write specifications with
surprising implications. We would like many such specifications to be
detectably ill-formed. Extensive checking while specifications are being
constructed is an important aspect of our approach. Larch was
designed to be used with a powerful theorem prover for semantic
checking to supplement the syntactic checks commonly defined for
specification languages.

*Programming language dependencies factored. We feel that it is
important to incorporate many programming-language-dependent
features into our specification languages, but to isolate this aspect of
specifications as much as possible. This prompted us to design a single
shared language that could be combined in a uniform way with different
interface languages.

" Shared language based on equations. The shared language has a
simple semantic basis taken from algebra. Because of the emphasis on
composability, checkability and interaction, however, it differs
substantially from the "algebraic" specification languages we have used
in the past.

" Interface languages based on predicate calculus. Each interface
language is based on assertions that can be translated to first order
predicate calculus with equality. Each interface language incorporates
programming-language-specific features to deal with constructs such as
side effects, exception handling, and iterators. Equality over terms is
defined in the shared language; this provides the link between the two
parts of a specification.

By referring to a shared language component in an interface specification, we gain
the advantage that every symbol in an assertion is precisely defined within the
specification language itself. In some other specification methods there is a reliance

225

SYSTEMATIC PROGRAM DEVELOPMENT

on an interpretation for symbols in an assertion, where the interpretation comes from
outside the specification language. In contrast, some other methods provide an
assertion language defined within the specification language, but restrict the
symbols to come from a fixed set of primitives. We gain the advantage that the user
is able to provide just the symbols necessary to write the assertions in the body of a
specification.

2.3. The Larch Editing Tool

A year ago. Joe Zachary completed the design of a syntax-directed editing tool that
facilitates the reading and writing of Larch specifications [23]. This work proceeded
from the premise that the time has arrived to construct specialized tools to support
the specification process.

Currently, a writer faces a series of sequential syntactic and semantic checks in
producing a Larch specification. Context-free constraints are defined relative to free
text: context-sensitive checks, relative to sentences in the context-free language;
and semantic constraints, relative to syntactically correct text. This style of
definition lends itself to a batch style of text production, with the editing and multiple
checking phases distinct from one another.

This style of support is not satisfactory, because it focuses upon detecting errors
some time after they are committed. Errors are often symptomatic of some more
fundamental confusion and should be pointed out to the writer as they occur. For
this reason, the editing and checking phases in the Larch editor are integrated. The
editor is interactively involved in the incremental production and checking of
specification text. A full range of error prevention, avoidance, and detection is
available automatically at all times during the development of a specification.

This year the editor was partially implemented. Suresh Subramanian bUilt the
kernel of the editor, which constructs and manipulates an abstract representation of
Larch specifications [21]. This module directly incorporates the details of Zachary's
design. Rich Robbins designed and implemented a terminal display scheme [19].
His design addresses the problem of efficiently updating a display in the face of
incremental changes to an abstract text. Dave Detlets is currently integrating these
two modules with a user interface to produce a working editor.

2.4. Checking Larch Specifications

Larch shared language specifications must meet a variety of semantic constraints
in addition to the syntactic constraints that are associated with any formal language,
This semantic checking frequently reveals subtle mistakes. Incorrect specications
are as easy to write as incorrect programs. Just as the correctness of a program can

226

SYSTEMATIC PROGRAM DEVELOPMENT

be partially established hy testing it, we can partially establish the correctness of a
formal specification by proving theorems about it. Ron Kownacki has developed
techniques for automatically verifying that certain semantic requirements are met by
a formal specification in the Larch shared language [12].

The shared language is an algebraic specification language. Each shared
language specification has an associated first-order theory which is essentiallv a
theory of equality on terms. The semantic constraints on shared language
specifications are defined with respect to that theory. We have investigated the
requirements of consistency and completeness. These properties are defined in a
fashion that is similar to the corresponding definitions for theories in first-order
predicate calculus. A specification is consistent if its associated theory does not
contain contradictory formulas. Completeness is related to the adequate definition
of operators.

We address two independent aspects of the completeness and consistency
requirements as they are formulated for the shared language. Each is considered in
a purely mathematical setting as well as from an implementation point of view. We
have derived necessary and sufficient conditions that guarantee that these
properties hold in an arbitrary shared language specification. These conditions
must form the formal basis for any automated checking procedures.

The properties of completeness and consistency are undecidable for arbitrary
theories. As there can exist no effective checking procedures, our goal has been to
develop automated tests that usually succeed in practice. We have found such
checking procedures for a subset of the language. The common styles of
axiomatizaticri that we have observed have greatly influenced their design.

We cannot yet provide an assessment of how well the automatic checking will work
in practice, because an implementation does not yet exist. The automatic checks
are designed to be used in conjunction with a theorem proving system that is based
on term rewriting system technology. The effectiveness of the procedures hinges on
the assumption that certain advances in term rewriting systems research will be
forthcoming shortly. This assumption is justified by the rapid progress that is being
inade in the area. In the interim period, we can assess our progress by noting that
, ur semantic checking problems have been reduced to other problems that are well-
known to, and under investigation by, researchers in the field.

I here are limitations to our results that should be noted. The automated tests have
b,,,n developed for only a subset of the shared language. It is unclear whether our
methods can be extended to encompass the full language, although they will
certainly form an important component of any comprehensive semantic checking
systern Another inherent limitation of our approach is its dependence upon certain
st h s of axiomatization. However, this dependence seems to be justified by the
undecidab6ility of the problems.

227

SYSTEMATIC PROGRAM DEVELOPMENT

A final limitation is that we have not always considered the checking procedures in
the context of the complete specification environment. Shared language
specifications can be combined and modified in various ways. We would like to
minimize the amount of checking that must be repeated after these manipulations.
However, changes to a specification do not correspond directly to changes in the
associated theory. For this reason, we consider semantic checking of an
incrementally changing specification to be a separate research problem.

The implementation of these tests will rely heavily upon the technology of term-
rewriting systems. REVE (see Section 3) will provide the necessary support for this
project.

3. THE REVE THEOREM PROVER

The availability of automatic tools for reasoning about Larch specifications is
essential to our specification approach, and has influenced the design of Larch
itself. Accordingly, we have devoted considerable effort to the further development
of REVE, a theorem prover for equational theories. REVE will eventually be used to
verity the consistency of specifications written in the Larch shared language, and to
help analyze the meaning of such specifications (Section 2.4). REVE is now in use in
many laboratories in the United States and abroad.

Several procedures are known theorem proving using rewriting techniques. The
most important of those is the Knuth-Bendix completion procedure [11], which
attempts to "complete" a rewriting system to make it confluent, and thus provide a
decision procedure for the equational theory of the rewriting system. Knuth-Bendix
requires the use of a unification algorithm, and a reduction ordering on terms to
prove that the rewriting system terminates. The termination proof is the chief
impediment to automatic theorem proving with Knuth-Bendix: using current
technology, user interaction is usually required to assist the system in making the
appropriate decisions during the proof. Many systems, such as Affirm [17], offer no
support for the termination proof.

REVE was developed in two stages. REVE 1 [13] was conceived and implemented
by Pierre Lescanne during his visit with SPD in 1980-82. It included one of the first
implementations of Knuth-Bendix to deal effectively and flexibly with termination.
REVE 2 [31 was engineered from the ground up by Randy Forgaard and Dave
Detlefs, expanding upon Lescanne's ideas. In addition, REVE 2 seeks to provide 1) a
solid source code base upon which to build, 2) automatic theorem proving
capabilities, suitable for embedding in other applications, and 3) a friendly and
powerful user interface. REVE 2 has been modularized and documented to meet the
first goal, including a complete set of abstractions pertinent to rewriting applications.
We have made substantial progress toward the second goal by incorporating

228

SYSTEMATIC PROGRAM DEVELOPMENT

features into REVE 2 that allow termination proofs and Knuth.Bendix to proceed
nearly automatically in an intelligent fashion. The third goal has been addressed
with a flexible command interpreter that provides a rich set of commands, explicit
control over rewriting and termination proof strategies, on-line help facilities, and
detailed error messages.

The following sections discuss the most significant aspects of REVE. Section 3.1
outlines our current work on automatic termination proofs in REVE. Section 3.2
describes REVE's failure-resistant Knuth-Bendix implementation. Section 3.3
discusses REVE's role as a rewrite rule laboratory, and our work with General
Electric in this regard. Finally, Section 3.4 presents the REVE work, currently
underway, that will be the major implementation thrust in the coming year.

3.1. Toward Automatic Proofs of Termination for Rewriting Systems

REVE provides a number of simplification orderings [1] for use by Knuth-Bendix.
These orderings on terms are a powerful means of proving termination: as each
equation is turned into a rewrite rule, the rule is oriented so that the left-hand side is
greater (under the ordering) than the right-hand side. Recent simplification
orderings are parameterized on a precedence (partial ordering on equivalence
classes of the basic function symbols) and status map (for each function symbol, the
relative importance of its arguments in the simplification ordering).

Though simplification orderings are more satisfactory for automatic termination
proofs than other reduction orderings, most simplification ordering implementations
require that the precedence and status map be given a priori. This limitation is a
significant obstacle in the dcvulopment of automatic termination proof techniques,
since there is no easy way to automatically choose an appropriate precedence and
status map beforehand.

To address this difficulty, REVE allows the precedence and status map to be
extended incrementally. Whenever an equation cannot be ordered under the
current precedence and status map, the equation is presented to the user, and the
user chooses extensions that might allow the equation to be ordered. The recursive
decomposition ordering with status (RDOS) [8][14][151 gives partial support for this
method by suggesting precedence extensions that might order the equation. Even
with the suggestions from RDOS. however, the termination proof is not automatic.
RDOS provides no suggestions for making function symbols equivalent in the
precedence. There is no automatic means for deciding on the appropriate subset of
the RDOS suggestions to use in extending the precedence. RDOS gives no
suggestions for extending the status map.

To solve these problems, we developed and implemented the direct synthesis

229

SYSTEMATIC PHOGRAM DEVELOPMENT

monotonic path ordering with status (DSMPOS) in June 1984. When an equation
cannot be ordered, the implementation of DSMPOS provides a complete set of
minimal precedence and status map extensions that will order the equation. If some
equation is encountered for which there are no such extensions, REVE's "undo"
facility can be used to back up to some decision point and choose a different
extension for a previous unorderable equation. When such a scheme is
systematically pursued, it amounts to an automatic depth-first search for some
precedence and status map that wit l prove the termination of the rewriting system.
Presently. REVE presents the complete set of minimal extensions to the user, and

the user chooses one. We are currently implementing a facility for automatically
iterating over the possible extensions and automatically undoing when a dead end is

reached.

Although DSMPOS and RDOS are the same ordering when the precedence and

status map are total. RDOS can order some equations that are not orderable by

DSMPOS under a partial precedence and status map. In February 1984, we

developed the exhaustive monotonic path ordering with status (EMPOS), which is

more powerful than RDOS. and has some of the automatic features of DSMPOS.

Both DSMPOS and EMPOS are based on the monotonic path ordering with status
(MPOS), an improvement to the recursive path ordering with status (RPOS) [lO]that
makes the ordering monotonic in the status map. In both RPOS and RDOS.

extending the status map may change the orientation of previous rewrite rules, or

even make previously ordered rules unorderable. The monotonicity properties of
MPOS solve these problems.

3.2. A Failure-Resistant Implementation of Knuth-Bendix

REVE's Knuth-Bendix implementation is an improved version of Huet's [6], which is
itself a more efficient version of the original [11]. The chief imerovements of the
REVE implementation over Huet's are:

" REVE does not require that the precedence and status map be given a
priori. They may be incrementally extended as each unorderable
equation is considered.

" The user may interrupt and "undo" .Ie completion process at any time,

to return to any previous decision point. This might be used, for

example, to choose a different precedence or status map extension for a

previous unorderable equation.

" REVE's Knuth-Bendix does not necessarily fail when an urorderable

equation is found. If there are no acceptable precedence or status map

230

SYSTEMATIC PROGRAM DEVELOPMENT

extensions for an unorderable equation, the user may postpone the
equation.

" REVE incorporates a postponement scheme that assists in applications
where automatic operation is required, including the automatic
postponement of large equations.

° REVE computes smaller critical pairs first, which can expedite the
completion process.

3.3. Rewrite Rule Laboratory

While the progress of research into rewriting systems has been significant, it has
been impeded by the inordinate difficulty of implementing and using the increasingly
complex algorithms prevalent in state-of-the art term rewriting research. The crux of
the problem is twofold: the large effort required to build state-of-the-art software and
the difficulty of acquiring usable software from others. The difficulty of acquiring or
constructing good rewriting software serves both to slow down the work of those
already involved in studying or using term rewriting systems and to inhibit the entry
of new researchers into the field. It affects theoretical work as well as application-
oriented work.

To help bridge the software gap, REVE provides some limited experimentation
facilities, and has been carefully modularized with layered, rewriting-related
abstractions to permit fast implementations of new algorithms using REVE's
modules. In the past year, researchers in several laboratories have successfully
written applications that use some or all of the modules in REVE.

3.4. Equational Term Rewriting Systems

The correctness of Knuth-Bendix requires that the rewriting system terminate at
each step of the procedure. This requirement, together with the limitations of
classical unification, disallows the use of useful permutative equations such as
commutativity.

Jouannaud and Kirchner [7][9] have addressed this problem by extending the
Knuth-Bendix procedure to operate upon an equational term rewriting system
(ETRS): a rewriting system together with a set, E, of equations. The equations in E
are not converted into rules; instead, extended Knuth-Bendix exploits a finite and
complete unification algorithm for the equational theory of E. In a cooperative
venture. Helene Kirchner and Claude Kirchner of the Centre de Recherche en
fnformatique de Nancy, France, are developing REVE 3, which will incorporate the
Jouannaud-Kirchner procedure. Their implementation makes use of the generalized

231

THEORY OF COMPUTA fiON

whenever the algorithm produces a bisection, it is guaranteed to be
optimal (i.e., the algorithm also produces a proof that the bisection it
outputs is an optimal bisection), for any kind of graph,

* the algorithm works well both theoretically and experimentally,

* the algorithm employs global methods such as network flow instead of
local operations such as 2-changes, and

* the algorithm works well for graphs with small bisections (as opposed to
graphs with large bisections, for which random bisections are nearly
optimal).

2.6. Benny Chor

My research during the last year was primarily concentrated in cryptography. The
main results are contained in two papers. One was written jointly with Oded
Goldreich (to appear in FOCS, October 1984) [5), and the other with Ron Rivest
(submitted to Crypto84) [6].

In the first paper, we prove that RSA least significant bit is 1/2 + 1/logcN secure,
for any constant c (where N is the RSA modulus). This means that an adversary,
given the ciphertext, cannot guess the least significant bit of the plaintext with
probability better than 1/2 + 1 / lo g;N unless lie carl break RSA.

Our proof technique is strong enough to give, with slight modifications, the
following related results:

1) The log N least significant bits are simultaneously 1/2 + l/logc N

secure.

The above also holds for Rabin's encryption function.

Our results imply that Rabin/RSA encryption can be directly used for pseudo
random bits generation, provided that factoring/inverting RSA is hard.

In the second, we introduce a new knapsack type public key cryptosystem. The
system is based on a novel application of finite fields arithmetic, following a
construction by Bose and Chowla. Appropriately choosing the parameters, we can
control the density of the resulting knapsack. In particular, the density can be made
high enough to foil "low density" attacks against our system.

245

THEORY OF COMPUTATION

and data type declarations. The syntax and the semantics of the typed lambda
calculus can be made to play a crucial role in such descriptions.

Within this framework I studied different formalisms that can be used to add
product and sum types to the the classical typed lambda calculus that has just
functional types. I compared the reduction theories corresponding to these
approaches from the perspective of strong normalization and Church-Rosser
resu Its.

Another topic that I researched is that of a unitary model theory for type-tree and
typed lambda calculus. Within this topic I studied the various definitions of models of
the lambda calculus that appear in the literature with particular emphasis on the
extent to which these models behave like first-order algebras.

More generally, when we allow the types to satisfy constraints (domain equations),
we are driven toward considering as models (small) cartesian closed categories. My
current research goal is to describe a coherent model theory for this situation that
would parallel and generalize the one for the type-free lambda calculus by using
cartesian closed categories instead of lambda algebras.

2.5. Thang Bui

My major research activity of this year was to analyze the performance of graph
bisection heuristics. This work was done in collaboration with S. Chaudhuri,
T. Leighton, and M. Sipser.

The graph bisection problem is the problem of finding the minimal set of edges of a
graph whose removal will divide the graph into two disjoint subgraphs of equal size.
This problem is known to be NP-complete. There are some well-known heuristics for
solving this pioblem, e.g., the Kernighan-Lin algorithm. However, no provable
performance of any of these heuristics are known. The result of our work is a
polynomial time algorithm. For every input graph, this algorithm either outputs the
minimum bisection of the graph or halts without output. More importantly, we show
that the algorithm chooses the former course with high probability for many natural
classes of graphs. In particular, for every d > 3. all sufficiently large n and all b
= o(n 1

2/d, 1)), the algorithm finds the minimum bisection for almost all d-regular
graphs with n nodes and bisection width b. For example, the algorithm succeeds for
almost all 5-regular graphs with n nodes and bisection width o(n 2

1
3
). The algorithm

differs from other graph bisection heuristics (as well as from many heuristics for
other NP-complete problems) in several respects: most notably:

* the algorithm provides exactly the minimum bisection for almost all input
graphs with the specified form, namely the d-regular graphs with 2n
nodes and bisection width b =o(nI 2/(d +), instead of only an
approximation of the minimum bisection,

244

obtain a decision procedureO U51iiuj dfter nt notiorns of nor mal forms. mo)(oed
Eiercovrci proved that ary, (/?q rlncr ma form) of a given to: m is reachable th~rou~gh a
particular stratc,% and so th (pvvtrf into; si- of these formis are relaitively easy
to computC and(Canl he LiScd to COrrpatre ter ins. I hey are of courSe mostly US~tUl for
finding terms that are not provably uris I. This result wvas used for finditig unsolvable
terms that are not pruvibI e-quivailent.

Another stratocqy has heen invebtigated that was inspired by the fixed point
semantics [2?]. Another direction of '.urk l(Was based On a sugqj eStrOf Of Michael
Karr. He proposed a rsduction systom that extends the (13qr) rules plus x(Yx) -> Yx
andt is weak (Thurch Robser. A refinement of the ideas used for Tarit's prof of strong
normalization seem to be required to maike thre nrc thud work ill this case.

2.3. Ravi Boppana

This year I have been doing research on the complexity of De:;Ican circuits. Tile
circuit model that I consider allows alter natirng levels of AND gattes arid OR gates.
with each gate allowed unbhounded farrir and fariouf. The size of a) circuit is the
nuruher of gates it contains, arid its depth is the iurnllor of alter rating levels.

Furst. Saxe. arid Sipsor [9]. and indepenidently Aifat (31. haveo :4 '.vrr that the ipurity
fu notion (which is 1 if arn odd number of its variables are 1) lilu rs niare than
polynomial size to compu to onl constanlt depth circuits. Lnfriu n iately, the gap
betv,(ecr their lowr ii d and the best kriown upper bound is lage. and thle exact
conmplexity of the parity fUnction is still a irrjor open problem.

I haven't solved the above problem, but I have been able to solve a weaker
protrlom. Consider the ri . of monotone circ uits, which are circuits which have no
negations alpearirrg in them. Ili [4]. 1 showed that computing the rrajority function
(which is 1 it at least orie half of its variables are 1) on constant depth circuits
requires exponential size.

This result imiplies exponential lower l3ounds for other functions a3 well, including
graph connectivity and detecting large cliques in graphs. These lower bounds are
otitaired using constam depth reductions.

Currently I am interestedt in extending tI ese results to the case nonmonotirre
CirCUits. Even improved lower hounds for depth 3 circuits would be very intoresting.

2.4. Val Breazu-Tannen

My research addtresses pruhlemls e'ncountered when trying to give adequate
st ni,ritic descr iptiuns for progr arilngI languages that allow hig~her-order proceduire

243

THEORSY OF COKIxP UI AT ION

2. MEMBER REPORTS

2.1. Amihood Arnir

Temporal Logic: Pir vwti in.. in i n to set of ce; nectives wais knowni for
noniint~ u tnix- moot ls A iudiiod (if cuntiristirg tine mi (lIs with a complete set of
conliCti' fS sh5 %rfl it, 111 ar,! , iniples of inr,edr 0piossively complete models

,-rk, ~u t using IllSi" e st u A iiilt1110 .

VLSI Algorithms: Plinairitv sI-is h connectivity of modules was shown by
LuPint(r to be iii e in ii timne. A fas~ter, direct algorithm is; given in [2] for

Uihql tfleC moOns c, It tWe ailgor Ibmh can hto adapted to the flippable case. it could
offer i ic-r naitvt, to Hopcr nfl and I ajan's planar graph embedding algorithm in
Se1ie Cases.

Lambda Calculus: Ccindtos area ,uurlht linder which fragment of a model
base t,, pe and some-j Kise to base furm(iu0ns can be embedded in a fixed or least fix
point type frame.

2.2. Irina Bercovici

Pa rhin dcnof.ltionafl 'i rss(see for examploI [22]) has strengthened
inturf est in a number of ot'iisOf t1 l) aI A caico jlos. The maior issues are
deCid,1bibtl, Of reUivMJUWrs -awr ui ()va n f ttunis. compit- xity of decision
pruccoores. I ri trctitionol (I. -i;in pr- - ss fur ostAl:.lrhing eqnivatenice of
,\ teris is: conliput.s the nioral' formb and cormpare tha m. This idea works in
systemis vdioso equivalence relaition is base(d enr reduction rules thait are Church-
Rosr and weakly riormali,-ahle. One oft ri proves tlic oe Iroperties v) actually
proving only weak Church-Rossuf h ut strung nrmnalizasCon.

Bercovici analyzed these properties; for \ calculus v.;tb subjective pairing. A
strongeor and cc; reolted version of a piper by Wand-j 1101 proving strong
noriralizatiuni for pliiring and direOct sum wais obtained. Ihis now versioin (besides
correri ig flaws in) the eXISting proots) extends the method to ice -rlporate the
axioms, it subjectivity for the two new ope(raitions and also does not require the
assuniption that thie system is weakly nornalizable. Anothe-r proof of strong
normald, ability for the systemn with subjective pairing wais provided ijorrnt work with
Michael Kar r. Harvard) usi-,ng Tait's irrthod.

The reat challenge is proving deccidahilily for another extfrusion of the calculus,
irsimely the one endowe,(d with tre constant Y (at all approprtisto types) arnd the axiom
Yx -x(Yvx). Using the rule YX > x(Y x) togctfier with (/?) arnd (it) one obtains a
Church Ros,,er syslem which is obviously riot terminating. Still one may hope to

242

THEORY OF COMPUTATION

1. INTRODUCTION

The Theory of Computation Group has had a productive and prolific year, with
research progressing on many fronts. Specifically, work was done in the areas,
among others, of:

* models of the (typed and untyped) lambda calculus

* VLSI placement and routing algorithms

* graph bisection heuristics

* analysis of the security of the RSA cryptosystem

• new knapsack-type public-key cryptosystems

* database theory

* pseudo-random number generation

* knowledge complexity

* new signature schemes resistant to adaptive chosen-message attacks

* systolic arrays

* relativized computations

* algorithms on groups

* algorithms for sliding-block puzzles

* parallel computation

" fat-tree" supercomputer architectures

" complexity of unification procedures

* complexity-based theory of randomness

* circuit complexity of finite functions

The progress of the Theory Group is summarized in the following reports by the
individual members of the group.

241

THEORY OF COMPUTATION

Undergraduate Students

P. Gaber M. Novick
D. Jilk S. Rao
J. Kilian

Support Staff

A. Benford K. Story
I. Radzihovsky

240

THEORY OF COMPUTATION

Academic Staff

P. Elias S. Micali
S. Goldwasser A. Meyer
C. Leiserson G. Miller
T. Leighton R. Rivest, Group Leader
N. Lynch M. Sipser

Research Staff/Visitors

A. Amir P. Kanellakis
M. Ben-Or D. Kfoury
1. Bercovici L. Levin
C. Dwork K. Lieberherr
H. Fell S. Schwarz
J. Friedman B. Trakhtenbrot
0. Goldreich A. Shamir
H. Heller R. Street
S. Homer S. Zachos

Graduate Students

P. Berman D. Kornhauser
S. Bhatt M. Lepley
V. FBeazuTannen M. Maley
R.BEoppana J. Mitchell
T. Bui A. Moulton
J. Russ C. Phillips
B. Chor M. O'Connor
S. Cosmadakis A. Sherman
L. Greenberg P. Shor
W. Gassarch S. Sur
T. Hagerup S. Trilling
R. Hirschfeld L. Yedwab
M. Komichak P. Weiss

SYSTEMATIC PROGRAM DEVELOPMENT

4. Walters. MG. "An Illustrated Object Code Optimizer," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1984.

Theses in Progress

1. Forgaard, R. J. "A Program for 3enerating and Analyzing Term
Rewriting Systems," SM. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected
September 1984.

2. Yelick, K.A. "A Generalized Approach to Equational Unification", S.M.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected September 1984.

Talks

1. Forgaard, R.J. "REVE: A Term Rewriting System Generator with
Failure- Resistant Knuth-Bendix," NSF Sponsored Workshop on Term
Rewriting Systems;

2. Guttag, J.V. "Where and Wither Formal Specifications,"

GTE Laboratories;
University of Delaware;

3. Guttag, J.V. "An Overview of the Rewrite Rule Laboratory Project," NSF
Sponsored Workshop on Term Rewriting Systems.

4. Guttag, J.V. "The Relationship of Mechanical Theorem Proving to
Programming Methodology," IFIP Working Group 2.3

5. Guttag, J.V. "The Larch Family of Languages,"

Wang Institute;
IFIP Working Group 2.2.

238

SYSTEMATIC PROGRAM DEVELOPMENT

21. Subramanian, S. "The Implementation of an Abstract Editor for Larch,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, Junre 1984.

22. Yelick, K.A. "A Generalized Approach to Equational Unification", S.M.
Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected 1984.

23. Zachary, J.L. "A Syntax-Directed Tool for Constructing Specifications,"
S.M. Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, March 1983.

Publications

1. Forgaard, R. and Guttag, J.V. "REVE: A Term Rewriting System
Generator with a Failure Resistant Knuth-Bendix," Proceedings of a
Workshop on Term Rewriting, April 1984.

2. Guttag, J.V., Kapur, D. and Musser, D.R. (eds.), Proceedings of an NSF
Workshop on the Rewrite Rule Laboratory, General Electric Corporate
Research and Development Report No. 84GEN008, April 1984.

3. Guttag, J.V. and Horning, J.J. "An Introduction to the Larch Shared
Language," Proceedings of the IFIP Congress '83, Paris, France, 1983.

4. Guttag. J.V. and Horning, J.J. "Preliminary Report on the Larch Shared
Language," MIT/LCS/TR-307, MIT Laboratory for Computer Science,
Cambridge, MA, October 1983.

5. Zachary, J.L. "Type Inference in MEDEE", Centre de Recherche en

Informatique de Nancy, 83-R-043, Paris, France, August 1983.

Theses Completed

1. Kownacki, R. W. "Semantic Checking for Formal Specifications," S.M.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1984.

2. Robbins, R. E. "Display Support for a Structure Editor," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1984.

3. Subramanian, S. "The Implementation of an Abstract Editor for Larch,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1984.

237

SYSTEMATIC PROGRAM DEVELOPMENT

Orderings," University of Illinois, Department of Computer Science,
Urbana-Champaign, IL, Feb, uary 1980, to appear.

i1. Knuth, D.E. and Bendix, P.B. "Simple Word Problems in Universal
Algebras," in Computational Problems in Abstract Algebra J. Leech
(ed.), Pergamon, Oxford, England, 1970, 263-297.

12. Kownacki, R.W. "Semantic Checking of Formal Specifications," M.S.
thesis. MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1984.

13. Lescanne, P. "Computer Experiments with the REVE Term Rewriting
System Generator," Proceedings of the 10th ACM Symposium on
Principles of Programming Languages" Austin, TX, January 1983,
99-108.

14. Lescanne, P. "Uniform Termination of Term Rewriting Systems:
Recursive Decomposition Ordering with Status," Proceedings of the 6th
CAAP, Cambridge University Press, Bordeaux, France, March 1984.

15. Lescanne, P. "How to Prove Termination? An Approach to the
Implementation of a new Recursive Decomposition Ordering,"
Proceedings of an NSF Workshop on the Rewrite Rule Laboratory,
September 6-9, 1983. Also General Electric Corporate Research and
Development Report No. 84GEN008, Schenectady, NY, April 1984,
109-121.

16. Levesey, M. and Siekmann, J. "Unification of A + C Terms (Bags) and A
+ C + I Terms (Sets)," Institut fur Informatik I, Universitat Karlsruhe,
Interner Bericht Nr., March 1976.

17. Musser, D.R. "Abstract Data Type Specification in the Affirm System,"

Journal of IEEE TSE, 6,1 (January 1980), 24-32.

18. Plotkin, G.D. "Building-in Equational Theories," in Machine Intelligence,
Meltzer, B. and Michie (eds.), Edinburgh University Press, Edinburgh,
Scotland, Volume 7,1972, 73-90.

19. Robbins, R.E. "Display Support for a Structure Editor," MIT Laboratory
for Computer Science, Cambridge, MA, June 1984.

20. "Stickel, M.E. "A Unification Algorithm for Associative-Commutative
Theories," Journal of the ACM, 28, 3, (July 1981), 423-434.

236

SYSTEMATIC PROGRAM DEVELOPMENT

References

1. Dershowitz. N. "Orderings for Term-Rewriting Systems," in TCS 17,
North Holland, 279-301, 1982, Also Preliminary version in Proceedings
of 20th IEEE Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, October 1979, 123-131.

2. Fages, F. "Associative-Commutative Unification," Proceedings of the
7th CADE, Napa Valley, CA, 1984.

3. Forgaard, R. "A Program for Generating and Analyzing Term Rewriting
Systems," M.S. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, to appear.

4. Guttag, J.V. and Horning, J.J. "Preliminary Report on The Larch Shared
Language," MIT/LCS/TR-307, MIT Laboratory for Computer Science,
Cambridge, MA, October 1984. Also Technical Report CSL-83-6, Xerox
Palo Alto Research Center, Palo Alto, CA, September 1983.

5. Guttag, J.V. and Horning, J.J. "An Introduction to the Larch Shared
Language," Proceedings of IFIP-83 Congress, 1983

6. Huet, G."A Complete Proof of Correctness of the Knuth-Bendix
Completion Algorithm," JCSS, 23, 1, (August 1981) 11-21.

7. Jouannaud. J.P. "Church-Rosser Computations with Equational Term
Rewriting Systems," Centre de Recherche en Informatique de Nancy,
Nancy, France, January 1983.

8. Jouannaud, J.P. Lescanne, P. and Reinig, F. "Recursive Decomposition
Ordering," Proceedings 2nd IFIP Workshop on Formal Description of
Programming Concepts, Garmisch-Partenkirchen, W. Germany June
1982. Also "Recursive Decomposition Ordering and Multiset
Orderings," MIT/LCS/TM-219, MIT Laboratory for Computer Science,
Cambridge, MA, June 1982.

9. Jouannaud, J.P. and Kirchner, H. "Completion of a Set of Rules Modulo
a Set of Equations," Technical Note, SRI International, Computer
Science Laboratory, Menlo Park, CA, April 1984. Preliminary version in
Proceedings of the 11th ACM Symposium on Principles of Programming
Languages, Salt Lake City, UT, January 1984.

10. Kamin, S. and Levy, J.J. "Attempts for Generalizing the Recursive Path

235

SYSTEMATIC PROGRAM DEVELOPMENT

" Minimality: The set of unifiers produced must be the maximally general
set.

" Efficiency: Comparisons must be made between different unification
algorithms for the same E-theory, and between E-unification and
alternative approaches to embedding the same eguational information in
the system.

The AC-unification algorithm was studied in detail. The best known algorithms
[20][16][21, are not minimal. Although minimality can be achieved in any E-
unification algorithm by searching the resulting substitution set for pairs of
substitutions in which one is a factor of the other, this check is very expensive,
Minimality is important from an efficiency standpoint because otherwise a large set
of unifiers will have to be handled ty the surrounding application. We have found a
modification to the published algorithms that eliminates many non-minimal unifiers
and improves the running time on many practical examples.

234

SYSTEMATIC PROGRAM DEVELOPMENT

implemented. In the implementation, new E-unification modules can literally be
plugged in by adding them to the list of currently supported algorithms.

To justify the soundness of our approach, a formal analysis was carried out. First,
a proof of correctness was found for the generalized algorithm to show that all
substitutions produced were in fact unifiers. Second, a proof of completeness was
developed. Proving termination has proven to be the hardest part of the analysis.
Given terminating E-unification algorithms, it is possible that the combined
unification algorithm will not terminate, although no examples of this have been
found. We are currently looking for sufficient conditions upon equational theories
that assure termination.

In addition, the unification algorithms for the associative-commutative and empty
theories were implemented as the most useful theories in practice and as examples
for testing the generalized algorithm. The following section discusses the AC-
unification algorithm as well as some of the criteria used in choosing AC-unification
as a useful kind of E-unification. The implementation effort was started in October,
1983 and a working system was completed in January of 1984; another month was
spent optimizing and improving the implementation, particularly the associative-
commutative algorithm.

AC-Unification: To provide examples for testing the generalized algorithm, the
unification algorithm for associative-commutative theories was implemented. One
reason for choosing AC-theory is that AC operators such as multiplication and
addition occur frequently in practice. A second reason is that these axioms cause
difficulties in automated reasoning systems. In PROLOG, for example, if a relation is
declared to be commutative using a normal procedure declaration, the program will
loop. The associative and commutative axioms cause similar problems in term
rewriting systems. Finally, unlike some equational theories in which unification may
be undecidable or inherently non-terminating, an effective unification algorithm is
known for AC-unification.

There are five properties of unification algorithms that we consider desirable, listed
in decreasing order of importance:

" Correctness: Extraneous substitutions that are not unifiers of the input
terms cannot be produced.

" Completeness: The set of unifiers produced must at least contain all of
the maximally general unifiers.

" Termination: This is not always essential, depending upon the problem
domain.

233

SYSTEMATIC PROGRAM DEVELOPMENT

unification strategy designed by Kathy Yelick of SPD, as well as her implementation
of a unification algorithm for AC theories [22] (see below).

Unification: Given two terms containing function symbols and variables, the
classical unification problem is to find a uniform replacement of terms for variables
that renders the two terms equal. For example, the terms f(g(x), g(y)) and f(y, z) can
be unified by replacing y with g(x) and z with g(g(x)). We are usually interested in the
variable to term mapping, called a substitution, which makes the terms equal, and
not just in the resulting unified term. In general, there are an infinite number of
unifying substitutions for two terms, but in classical unification all unifiers are an
instance of a unique most general unifier.

The idea of extending the unification process to equational unification was first
suggested by Plotkin [18]), who showed how it can be used in conjunction with
resolution-based theorem provers. In equational unification, or E-unification, a
substitution unifies two terms if applying the substitution to the input results in terms
that are provably equal in a given equational theory. In some equational theories
there is not a single most general unifier but rather of set of maximally general
unifiers which characterize the set of unifying substitutions.

Generalized Unification: Much of the work to date in equational unification has
been theoretically motivated--deciding whether there exists a unification algorithm
for a particular equational theory and what form the algorithm takes. The theoretical
bent of the field has led to some simplifying assumptions on the structure of terms;
many of the algorithms are developed to handle terms whose operators all have the
same properties.

Yelick has defined a generalized approach to the unification process by showing
how algorithms for different equational theories may be combined in some cases to
yield unification procedures for terms with mixed sets of operators. For example,
given a unification algorithm for the associative-commutative, or AC theory, and
another for the abelian group theory, we can automatically combine the algorithms
to unify terms such as x + (y * (-z)), where * is associative and commutative and +
and - are operators of an abelian group.

The first stage in developing the generalized algorithm was an analysis of the
unification process in different equational theories to determine what kinds of
theories can be automatically combined and which steps in the unification process
are independent of the equational theory being used. A theoretical description for
the generalized algorithm was made which involved deciding on the exact interface
and functionality of all E-unification algo ithms as well as the encompassing module.

A second step was an implementation to support the generalized algorithm and
allow simple, automatic extension to new E-unification algorithms as they are

232

1 iKOHY L C.MPLJ r AI1ON

2.7. Stavros Cosmadakis

We continued our research on the implication problem for functional and inclusion
dependencies. Specifically. we concentrated on the problem of inferring functional
dependencies in a paitwise consistent multi-relational database. We showed that
the problem is undecidable in general, but becomes decidable if the functional
dependencies satisfy an acyclicity condition. Under that condition, we also showed
that the problem is finitely controllable, i.e., unrestricted implication coincides with
finite implication. These results were obtained by exploiting a new graph-theoretic
methodology introduced in [7].

2.8. Oded Gold reich

During this year, my main interests have been in cryptography and especially in
two topics: strong pseudo random g ierators and the bit security of the plaintext
when encrypted using the RSA schei 3.

2.9. Shafh Goldwasser

Algorithmic Randomness: Goldreich. Goldwasser and Micali [11] investigated
the fit-,ld of algorithmic randomness. The goal is to develop a coherent theory of
rarldomness based on computational difficulty. The approach is very constructive.
In view of applications, particular attention has been devoted to finding the most
puwerful properties of randomness that can be achieved by polynomal-time
simulations.

The most significant result is a novel algorithm that transforms any one-way
function (i.e.. a possible candidate is the RSA function) and a secret randomly
se!ected k-bit input 'i' to a pseudo random function f, from k-bit strings to k-bit
strings. These functions can be used in many applications. They are easy to select
(by selecting their k-bit index) and easy to evaluate (on inputs i and x, f, (x) is
computable in polynomial time). Still they cannot be distinguished from truly random
functions by any polynomial time algorithm that does not know i but can ask for and
receive the value of the function at inputs of its choice. The new construction has
applications to cryptography, complexity theory and distributed computing.

Cryptography: Professor Goldwasser and Professor Blum (Berkeley) proposed a
new probabilistic Public-Key Encryption Scheme [12]. Every message, in this
system, has many possible encodings, each of which is selected by the sender at
random via a sequence of coin flips. The security of this system is based on the
assumption that the integer factorization problem is intractable. In particular, no
,jolynomial time bounded line-tapper car compute any partial information about
messages from their encodings. unless factoring integers is in polynomial time.

246

THL4iRYU uuMIA[I N

Partial information is defined to be ao, function (polynomial time, non-recursive...)
defined on the message space. No deterministic encryption scheme, such as RSA,
could possibly pass such sccurity requirements. Our scheme is comparable in
efficiency with existing deterministic schemes. 11 requires constant data expansion
and is at least as fast at the RSA cryptosystem.

Cryptographic protocols are based on the secrecy of some private knowledge and
should preserve such secrecy. The big open problems in the area are how to check
the correctness of a cryptographic protocol and when the principle of modularity
design can be correctly applied (i.e., under which conditions correct sLihprotocols
can be combined in complex protocols so as to preserve correctness). Goldwasser,
Micali and Rackoff [141 presented a novel computational complexity measure of
knowledge and applied it to cryptographic protocols. They measured how much
knowledge is released by the execution of a protocol. This lead to a theorem
fundamental for checking correctness of protocols and to discovering sufficient
conditions for correctly applying modular design.

Goldwasser, Micali and Rivest presented a new signature scheme [13]. The
novelty of the scheme is that the ability of foregoing messages is proved
cemputationally equivalent to the problem of integer factorization (in previous
schemes it was only proved that the ability to factor would imply ability to forge, but
not vice versa). Moreover. it is proved that forging remains hard even if an adversary
is allowed to ask and receive signatures of messages of his choice; i.e., the scheme
is secure against chosen ciphertext attack. Such a security feature is essential for
some applications. For example. a notary public has no control over the messages
that he has to sign. He is thus particularly vulnerable against chosen signature
attack.

A. Yao shows how to use the Exclusive-Or function to transform a weak one-way
function (a function which is hard to invert on a polynomial fraction of its domain)
into an unapproximable Boolean predicate (a Boolean predicate which can be
computed no better than by guessing at random, by any polynomial time,
probabilistic algorithm). Professor Goldwasser gave a simplified proof of this
theorem and showed how to construct a Boolean predicate which is unapproximable
if and only if factoring is intractable using the Exclusive-Or operator. This predicate
has applications to Pseudo Random Bit Generators and Public-Key Encryption.

2.10. Ron Greenberg

I have completed two major projects during my first year at MIT. The first one is an

nMOS chip containing two processors for a linear-array systolic priority queue with
variable length keys. This helped educate me about VLSI design and systolic
systems rather than being an original research endeavor. The second project is a

247

THEORY OF COMPUTATION

systolic simulator intended to provide capabilities for describing systolic systems in a
concise way, simulating them, and performing analyzes and transformations such as
retiming. I believe that I have made a good start, but the simulator would benefit
from the addition of some more descriptional aids and tools for analysis and
transformation. Hopefully, this project will be put to practical use in high-level
architectural investigations, such as "fat tree" simulations.

Currently, I am beginning to look into several issues raised by Professor
Leiserson's work on fat trees.

2.11. Ray Hirschfeld

Almost all oracles separate P and NP, which lends credence to the conjecture that
these two classes are in fact distinct. No analogous result is known for P vs. the
intersection of NP and co-NP. Ray Hirschfeld is working on a version of this problem
in which the machines can take as much time as they wish, but can make only a
limited number of oracle queries. This may provide insight into the time-bounded
case, which in turn will shed some light on the non-relativized situation. The
relationship between these two complexity classes is of practical importance, since,
for example, their equality implies that factoring integers is "easy."

2.12. Daniel Kornhauser

Daniel Kornhauser and Gary Miller found a polynomial time algorithm for deciding
the solvability of a certain pebble motion problem on graphs, which is a
generalization of Sam Loyd's '15-puzzle' and is related to problems of memory
management in totally distributed computer systems. This decision algorithm
generalizes an algorithm of R.M. Wilson which applied only to biconnected graphs
with one blank vertex.

They also obtained (with the help of Paul Spirakis at NYU) matching lower and
upper bounds of 0(n 3) for the number of moves required to solve the pebble
problem. Their approach allows solutions to be efficiently planned. They hope that
the algebraic methods used for this problem can be applied to geometrical movers'
problems arising in robotics.

Kornhauser and Miller also studied the related problem of the diameter of
permutation groups given by generators. They extended a result of Driscoll and
Furst, who proved a polynomial upper bound on diameter when the generators are
bounded cycles, to a moderately exponential upper bound for special cases of
arbitrary length cycles.

248

THEORY OF COMPUTATION

2.13. Tom Leighton

Professor Leighton's current research interests are centered on problems in the
areas of parallel computation, VLSI design and probabilistic analysis of algorithms.
In the area of parallel computation, Professor Leighton is developing algorithms and
networks (such as the mesh of trees) for very fast parallel computation. Work during
the past year was highlighted by the discovery of the first N-node, bounded-degree
network capable of sorting N numbers in O(log N) steps. Since sorting is a
generalization of packet routing, the resulting network is universal in the sense that it
can simulate any computation on any network with at most an O(log N) factor of
delay in time, the least possible. In addition to establishing the existence of universal
computers, the new work may also have applications to the design of
supercomputers.

In the area of VLSI design, Professors Leighton and Bhatt developed a framework
for solving VLSI graph layout problems. Graph layout problems model placemen
and routing problems, and the new framework provides techniques for minimizing
such cost functions as area, wire crossings and propagation delay. The framework
can also be effectively used to design regular and configurable layouts, to assemble
large networks of processors using restructurable chips, and to configure networks
around faulty processors.

In the area of algorithms, Professor Leighton is studying the average case behavior
of heuristics for NP-complete problems such as bin packing and graph bisection.
Such problems have many important practical applications, but no polynomial time
algorithms are known to solve these problems. As a result, heuristics are used in the
hope that they will work well most of the time. Professor Leighton is developing
techniques that can be used to mathematically analyze the average case behavior of
the heuristics. The initial work in this area has been very encouraging. Already, tight
bounds have been discovered for the behavior of several commonly used bin
packing heuristics, and a graph bisection heuristic was discovered that is
guaranteed to work optimally for almost all graphs in several natural classes of
graphs. The bin packing results, in particular, are also surprising since they
disproved several widely believed conjectures.

2.14. Charles Leiserson

Professor Leiserson has continued his investigations in the areas of VLSI
algorithms and parallel computation. By combining work that has been done in VLSI
layout theory and routing networks, he has developed a new notion of universal
routing network which includes the cost of hardware needed to build the routing
network. He has discovered such networks called "fat trees," whose layout
properties are based on Leighton's tree of meshes. Fat trees are universal in that

249

THEORY OF COMPUTATION

they can simulate every interconnection network, using only slightly more time than
does an optimal implementation of the network, given the same hardware resources.
Previous notions of universality have not included the cost of hardware.

The work on fat trees was stimulated by the Connection Machine project in the Al
Laboratory. He and Professor Rivest contributed to the original design of Professor
Knight's cross-omega network.

In the area of systolic and semisystolic design, Professor Leiserson has developed
many transformations for optimizing semisystolic circuits. The tools include
retiming, slowdown, broadcast and census elimination, resetting code motion,
coalescing, and interlacing, to name a few.

Miller Maley and Charles Leiserson have been studying the problem of planar
routing and routability. We have begun to develop a substantial theory which we
hope to incorporate into a layout compactor that does optimal jog introduction.
Cynthia Phillips and Charles Leiserson have developed an O(n Ig n) time algorithm
for finding the connected components of a set of rectangles in the plane. The
algorithm is space-efficient in the sense that the amount of primary memory required
is proportional only to the number of rectangles cut by a scan line. For VLSI
applications, this number is about the square root of n, which means that the
geometric design rules can be checked for extremely large chips.

Professor Leiserson has also developed several interesting chip architectures.
One chip is a fast concentrator chip. This chip has a set of input lines and fewer
output lines. Each input line has either a zero or a one. The ones indicate the
presence of messages, and zeroes indicate the absence. The chip maps as many
input lines with messages to output lines, and does it by going through only Ig n
gates. Also, with Ray Hirschfeld and Peter Gabor, Charles Leiserson has developed
an area-efficient chip to do multiplication of complex numbers.

2.15. Miller Maley

Charles Leiserson and Miller Maley have examined the problem of routing wires on
a single layer between fixed modules when the topology of the layout is given. They
have discovered a succinct characterization of the set of such layouts that have
legal routings, and used it to develop an efficient algorithm for testing routability.
Recently, Maley has solved an important special case of the routing problem, where
modules and wires are constrained to lie in a rectilinear grid. Over the summer, this
work will be extended to more general routing problems, and should also lead to the
solution of a problem of VLSI layout compaction with automatic jog introduction.

250

THEORY OF COMPUTATION

2.16. Silvio Micali

Algorithmic Randomness: Goldreich, Goldwasser and Micali investigated the
field of algorithmic randomness [11]. The goal is to develop a coherent theory of
randomness based on computational 6;ficulty. The approach is very constructive.
In view of applications, particular attention has been devoted to finding the most
powerful properties of randomness that can be achieved by polynomial-time
simulations.

The most significant result is a novel algorithm that transforms any one-way
function (i.e., a possible candidate is the RSA function) and a secret randomly
selected k-bit input i' to a pseudo random function f, from k-bit string to k-bit strings.
These functions t's can be used in many applications. They are easy to select (by
selecting their k-bit index) and easy to evaluate (on input i and x, fi(x) is computable
in polynomial-time). Still they cannot be distinguished from truly random functions
by any polynomial-time algorithm that asks for and is given the value of the function
at various inputs. The new construction has numerous applications to cryptography,
complexity theory and distributed computing.

Cryptography: Cryptographic protocols are based on the secrecy of some
private knowledge and should preserve such secrecy. The big open problems in the
area are how to check correctness of a cryptographic protocol and when the
principle of modularity design can be correctly applied (i.e., under which conditions
correct subprotocols can be combined in complex protocols so to preserve
correctness). Goldwasser, Micali and Rackoff [14] presented a novel computational
complexity measure of knowledge and applied it to cryptographic protocols. They
measured how much knowledge is released by the execution of a protocol. This
lead to a theorem fundamental for checking correctness of protocols and to
discovering sufficient conditions for correctly applying modular design. In particular
a very efficient protocol for signing contracts has been found by Ben-Or, Micali and
Shamir [151.

Goldwasser, Micali and Rivest presented a new signature scheme [13]. The
novelty of the scheme is that the ability of foregoing messages is proved
computationally equivalent to the problem of integer factorization (in previous
schemes it was only proved that the ability to factor would imply ability to forge, but
not vice versa). This scheme is even more attractive. It is proved that forging
remains hard even if an adversary is allowed to ask and receive signatures of
messages of his choice; i.e., the scheme is secure against chosen ciphertext attack.
Such a security feature is essential in some applications. For example, a notary
public has no control over the messages that he has to sign. He is thus particularly
vulnerable against chosen signature attack.

251

THEORY OF COMPUTATION

2.17. Gary Miller

During the year we have begun a new research effort in fault tolerant computing in
a highly parallel environment. We are interested in computational networks which
lend themselves to a maximum amount of parallelism even at the cost of restricting
the individual elements to be extremely simple. We are also considering the
possibility that the devices may error.

At this point we have been considering boolean circuits with possible feedback.
More generally, we consider weighted directed graphs where each node is a
threshold device which takes on states, say,T-1. We call this a network of threshold
devices.

The calculation performed by a network of threshold devices will depend on the
order in which the devices update there state. We have considered several different
update rules including; simultaneous or synchronous, random, and worst-case
updating.

Margaret Lepley and myself have been able to construct networks which when
updated randomly run with only an exponentially small probability of error. In
particular, we have constructed polynomial size random networks which simulate
synchronous ones with only log degradation in time and only exponentially small
probability of error.

We are now considering environments where devices may fail to update correctly.
The goal is to construct random networks which may also have errors. We are fairly
close to such a construction.

2.18. John Mitchell

Unification algorithms are used in theorem provers, PROLO3 interpreters, and
other symbol-manipulation tasks. Several current research efforts are aimed
towards solving symbolic problems more quickly by using many processors in
parallel. With Cynthia Dwork (MIT) and Paris Kanellakis (Brown University), I proved
that unification is a complete problem for the class of problems that are solvable in
polynomial time [8]. Since most complexity theorists do not believe that all problems
computable in polynomial time can be solved appreciably faster in parallel, it is
unlikely that a substantial speed-up of unification can be achieved using parallel
computation. Our result holds for a number of variants of unification.

Programming language designers have studied compile-time type checking for
several years. It is difficult to permit flexible use of procedures and still do compile-
time checking. One important kind of "permissiveness" is to allow programmers to
write polymorphic procedures, procedures that accept many different types of

252

THEORY OF COMPUTATION

parameters. In [16][17], I studied an implicit approach to polymorphism based on
algorithms that infer types for typeles - programs. In forthcoming work with Gordon
Plotkin (Edinburgh), we formulate a strongly-typed language with polymorphic
functions and a very flexible kind of data abstraction. The formal semantics of this
language is studied in [18].

2.19. Andy Moulton

During the past year, I have developed algorithms to lay power and ground wires
on a VLSI chip. These algorithms form part of the Placement-Interconnect (PI)
System, developed under Professor Ronald Rivest. As such, they take advantage of
the way in which PI places the logic modules and pads. The power-ground
algorithms first lay a ground ring outside the pads, then lay a power ring inside the
pads. The algorithms lay a tree that connects the logic modules' terminals to the
ground pad, then lay branches that connect the logic modules' terminals to the
power ring without crossing the ground wires.

I finished my master's thesis, which fully describes the algorithms mentioned above
[19]. This thesis also discusses a technique of keeping the power wires from
crossing the ground wires. A Hamiltonian cycle goes through every module of the
chip in such a way that the ground terminals lie inside the Hamiltonian cycle while
the power terminals lie outside. Routing the ground tree inside the cycle and the
power tree outside the cycle ensures that the wires of one tree do not cross the wires
of the other tree. This technique is described in a paper I presented at the ACM IEEE
20th Design Automation Conference [20].

2.20. Cynthia Phillips

I am writing a paper with Charles Leiserson on a space and time efficient algorithm
for finding the connected components of rectangles in the plan. I plan to continue
work on space efficient algorithms for computational geometry. I'll also be working
with Charles on "fat trees".

2.21. Ronald L. Rivest

During the past year, I have worked on the following:

1) I have continued working on the PI Placement and Interconnect system,
which is being implemented primarily by Alan Sherman, Andy Moulton,
and Susmita Sur. Andy Moulton has now finished his M.S. thesis on the
powor/ground routing phase. Alan is working on the placement and
resizing code, and Susmita has been working the resizer as well.

253

THEORY OF COMPUTATION

2) 1 have been studying the theoretical aspects of low-level sensori motor
intelligence, and have been developing theories about how intelligence
can be make sense of low-level inputs. The major themes are the
importance of expectations and the treatment of expectations as "first-
class" sensory inputs.

3) 1 have worked with Benny Chor to develop a new knapsack-type public-
key cryptosystem, which seems to avoid the weaknesses present in
earlier knapsack-type cryptosystems.

4)1 have worked with Shafi Goldwasser and Silvio Micali on a new
signature scheme, which is provably invulnerable to chosen-signature
attacks. This result is somewhat paradoxical, since previous attempts to
prove such invulnerability have actually led to weaknesses.

5)1 have begun work with Laura Yedwab on formalizing the end-game in
GO using Conway's "number system".

2.22. Alan Sherman

Under the supervision of Ronald Rivest, Alan Sherman has been exploring issues
in the theoretical foundations of cryptographic strength. In particular, Sherman has
been investigating formal definitions of cryptographic strength, relationships among
algebraic and security properties of cryptographic functions, and the strength of
multiple encryption. The goal of this research is to understand in a precise
mathematical sense what makes cryptosystems secure.

In addition, Sherman has also been studying the problem of placing modules on a
custom VLSI chip. As a member of the PI project, Sherman has developt d and
implemented an efficient heuristic placement algorithm based on a mincut strategy.
More recently, Sherman has been working on provably good algorithms for
determining the orientation of modules whose approximate placements are already
known.

2.23. Michael Sipser

I am continuing research on methods for proving lower bounds on the
computational complexity of combinatorial problems. I have been investigating the
analytic sets as a potential infinite analog to NP, and the classical theorem stating
that the analytic sets are not closed under complement as a means of shedding light
on the NP vs. co-NP question. I can give a new, purely combinatorial proof of this
theorem [21].

254

THEORY OF COMPUTATION

David Barrington, a graduate student in the mathematics department, and I are
investigating finitary analogs to topological notions such as measure and category.
Ravi Boppana, a graduate student in the EECS department, and I are studying
problems in circuit complexity. Steve Trilling, a graduate student in the EECS
department, and I are studying questions on the definition of random sequences and
the random oracle hypothesis.

2.24. Steve Trilling

I am working with Mike Sipser on a complexity-based theory of randomness. The
eventual hope is to find a suitable definition of "random sequence" and a set of
conditions under which such a sequence could be efficiently computed. These
conditions, if they are true, will be strong enough to imply non-trivial facts about
complexity classes (i.e., perhaps P=R). Furthermore, the conditions should,
hopefully, capture some intuitive notion of "random".

255

THEORY OF COMPUTATION

References

1. Amir, A. and Gabbay. D. "The Cover Theorem for Finite H-dimension
Time Structures," to appear in Theoretical Computer Science, 1984.

2. Amir, A. "A Direct Linear-Time Planarity Test for Unflippable Modules,"
to appear in Networks, 1984.

3. Ajtai, M. "X11-Formulae on Finite Structures," Annals of Pure and
Applied Logic, 24 (1983) 1-48.

4. Boppana, R. "Threshold Functions and Bounded Depth Monotone
Circuits," 16th ACM Symposium on Theory of Computing, Washington,
DC, 1984, 475-479.

5. Chor, B. and Goldreich, 0. "RSA/Rabin Least Significant Bits are
1/Poly(log N) Secure," MIT/LCS-TM-260, MIT Laboratory for Computer
Science, Cambridge, MA, May 1984.

6. Chor, B. and Rivest, R.L. " A Knapsack Type Public Key Cryptosystem
Based on Finite Fields Arithmetic," to appear in Proceedings of Crypto
84, Santa Barbara, CA, August 1984.

7. Cosmadakis, S.S. and Kanellakis, P.C. "Functional and Inclusion
Dependencies: A Graph Theoretic Approach," Proceedings of the 3rd
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
April 1984, 24-37.

8. Dwork, C., Kanellakis, P. and Mitchell, J.C, "On the Sequential Nature of
Unification, MIT/LCS/TM-257, MIT Laboratory for Computer Science,
Cambridge, MA, March 1984.

9. Furst, M., Saxe J. B. and Sipser, M. "Parity, Circuits and the Polynomial-
time Hierarchy," 22nd IEEE Symposium on Foundations of Computer
Science, 1981, 260-270.

10. Gandy R.O. "Proofs of Strong Normalization," in To H.B. Curry, Seldin
and Hindley (eds.) 1980.

11. Goldwasser, S., Goldreich, 0. and Micali, M. "How to Construct Random
Functions," MIT/LCS/TM-244, MIT Laboratory for Computer Science,
Cambridge. MA, November 1983.

256

THEORY OF COMPUTATION

12. Goldwasser, S. and Blum, M. "An Efficient Probabilistic Public-Key
Encryption Scheme Which Hides All Partial Information," to be
presented at Crypto '84, Santa Barbara, CA, August 1984.

13. Goldwasser, S. "A 'Paradoxical' Solution to the Signature Problem,"
with Silvio Micali and Ronald Rivest, 25th Symposium on the
Foundations of Computer Science, October 1984.

14. Goldwasser, S. "The Knowledge Computable from a Communication,"
with Silvio Micali and Charles Rackoff, in preparation.

15. Micali, S. "Contract Signing by Delayed Signatures," with Michael Ben-
Or and Adi Shamir, in preparation.

16. Mitchell, J.C. "Coercion and Type Inference," Proceedings of the
Eleventh ACM Principals of Programming Languages Conference,
January 1984.

17. Mitchell, J.C. "Type Inference and Type Containment," International
Symposium on the Semantics of Data Types, Sophia-Antipolis, France,
to appear, 1984.

18. Mitchell, J.C. "Semantic Models of Second-order Lambda Calculus,"
submitted for conference presentation, 1984.

19. Moulton, A. S. "Routing the Power and Ground Wires on a VLSI Chip,"
M.S. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

20. Moulton, A/ S. "Laying the Power and Ground Wires on a VLSI Chip,"
ACM IEEE 20th Design Automation Conference, 1983, 754-755.

21. Sipser, M. "A Topological View of Some Problems in Complexity
Theory," to appear in the Proceedings of the Conference on
Mathematical Science, 1984.

22. Trakhtenbrot, B., Halpern, J. and Meyer, A. "From Denotational to
Operational Semantics for Algol-like Languages: An Overview," in Lojgir
of Programs. Proceeding, Clarke and Kozen (eds.) LNCS, Springer,
1983.

257

THEORY OF COMPUTATION

Publications

1. Boppana. R. "Threshold Functions and Bounded Depth Monotone
Circuits," 16th ACM Symposium on Theory of Computing, Washington,
DC, 1984, 475-479.

2. Goldreich, 0. "On Concurrent Identification Protocols,"
MIT/LCS/TM-250. MIT Laboratory for Computer Science, Cambridge,
MA, December 1983.

3. Goldreich. 0. "On the Number of Close-and-equal Bits in a String (With
Implications on the Security of RSA's L.S.B.)," MIT/LCS/TM-256, MIT
Laboratory for Computer Science, Cambridge, MA, March 1984.

4. Rivest, R.L. and Shamir, A. "Flow to Detect An Eavesdropper,"
Communications of the ACM, (1984).

5. Goldwasser, S. and Rackoff, C. "On Using the XOR Function as a
Security Amplifier: Applications to Factoring Based Encryption,"
presented at Eurocrypt '84, Paris, France, April 1984.

6. Micali, S. "Flow to Simultaneously Exchange a Secret Bit by Flipping a
Symmetrically-Biased Coin," with Mike Luby and Charles Rackoff,
Proceedings 2.4th Annual IEEE Symposium on Foundations of Computer
Science, November 1983.

7. Micali, S. "How to Construct Random Functions," with Oded Goldreich
and Shafi Goldwasser, MIT/LCS/TM-244, MIT Laboratory for Computer
Science, Cambridge, MA, November 1983.

8. Micali. S. "An Oblivious Transfer Provably Equivalent to Factoring," with
Michael Fischer and Charles Rackoff, presented at Eurocrypt '84, Paris,
April 1984.

9. Micali, S. "The Knowledge Computable from a Communication," with
Shafi Goldwasser and Charles Rackoff. in preparation.

10 Micali. S. "A 'Paradoxical' Solution to the Signature Problem," with
Shaft Goldwasser and Ronald Rivest, 25th Symposium on the
Foundations of Computer Science, October 1984.

11. Kornhauser, D., Miller, G. and Spirakis. P. "Coordinating Pebble Motion
on Graphs. the Diameter of Permutation Groups, and Applications," to

258

THEORY OF COMPUTATION

appear in Proceedings of the 25th Annual Symposium on the
Foundations of Computer Science, 1984.

12. Leiserson, C. and Saxe, J. "A Mixed-Integer Linear Programming
Problem Which is Efficiently Solvable," 21st Allerton Conference on
Communication, Control, and Computing, October 1983.

13. Leiserson, C. "Systolic and Semisystolic Design," IEEE International
Conference on Computer Design: VLSI in Computers, 627-632.

14. Leiserson, C. and Pinter, R. "Optimal Placement for River Routing,"
SIAM Journal on Computing, 12, 3, (August 1983) 447-462.

15. Gabor, P. "A Comparison of VLSI Design for Complex Multiplication,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA.

16. Bently, J., Johnson, D., Leighton T. and McGeoch, C. "An Experimental
Study of Bin Packing," Proceedings 21st Allerton Conference on
Communication, Control and Computation, October 1983.

17. Bently, J., Johnson, D., Leighton, T., McGeoch C. and McGeoch,
L. "Some Unexpected Expected Behavior Results for Bin Packing,"
Proceedings 16th Symposium on Theory of Computing, May 1984,
279-288.

18. Chung, F.R.K., Leighton, T. and Rosenberg, A.L. "Diogenes: A
Methodology for Designing Fault-Tolerant VLSI Processor Arrays,"
Proceedings IEEE Symposium on Fault-Tolerant Computing, June 1983,
26-31.

19. Karp, K.. Leighton, T., Rivest, R., Thompson. C.. Vazirani, U. and
Vazirani, V. "Global Wire Routing in Two-Dimensional Arrays,"
Proceedings 24th Conference on Foundations of Computer Science,
November 1983, 453.459.

20. Kleitman, D.. Leighton. T., Lepley, M. and Miller, G. "An Asymptotically
Optimal Layout for the Shuffle-Exchange Graph," Journal of Computer
and System Sciences, 26, 3, (June 1983) 339-361.

21. Leighton, T. Comp[xtjiy issues in VLSI: Optirnal Layuut for the Shuffle.

Exchange Graph pnd OtberA tworks, MIT Press, Cambridge, MA,
September 1983.

259

THEORY OF DISTRIBUTED SYSTEMS

messages required if communication is asynchronous [4]. However, the proof in [31
does not extend to the case of synchronous communication. It is, therefore, quite
natural to ask whether the 11(n log n) lower bound can be extended to the
synchronous case. or whether there are algorithms that somehow make use of the
synchrony to limit the number of messages transmitted.

We obtain both positive and negative answers to our question of whether
synchrony helps. On the one hand, we show that if processor id's are chosen from
some countable set (such as the integers), then there is an algorithm which uses
only O(n) messages in the worst case. The processors may initiate the algorithm at
different rounds, and do not know the value of n. Unlike the earlier algorithms, our
algorithm does not only use comparisons on id's - it uses the numerical value of the
id's to count rounds. The number of synchronous rounds used by our algorithm can
be very large in the worst case.

On the other hand. we show that both the departure from the comparison model
and the pussibility of using a large number of rounds are necessary in order to obtain
a linear communication algorithm. More specifically, if the algorithm is restricted to
use only comparisons of id's, then we obtain an S2(n log n) lower bound for the
number of messages required in the worst case. Alternatively, if the number of
rounds is required to be bounded by some t in the worst case, then there is a (very
fast-growing) function f(n,t) which has the following very interesting property. If id's
are chosen from any set T having at least f(nt) elements, then any t-bounded
algorithm requires Q(n log n) messages in the worst case. We achieve this result by
giving a transformation from any algorithm to a comparison algorithm. Both our
lower bound results hold even in the case that the number of processors in the ring
is known to each processor. and all the processors are known to start at the same
round.

6. DISTRIBUTED NETWORK ALGORITHMS

Shmuel Zaks has been working on design and analysis of algorithms for networks
of processors. where no central controller is present and no common clock is
available. The underlying communication networks usually dealt with are the
simplust kinds: rings, trees and complete graphs.

The model usually used consists of a network of processors, each with a unique
identity known initially only to itself. Communication is done via messages which
arrive in order and after a finite delay. but no a priori bound for that delay is known.
Assuming that the computation cost and the queueing cost in each processor is
negligible compared to the communication cost, it is customary to measure the
complexity of such algorithms by the total number of messages sent during any
possible execution. Previous work that is related to the work described here

274

THEORY OF DISTRIBUTED SYSTEMS

4.3. Communication Patterns in a Distributed System

Consensus problems arise in numerous guises and have traditionally been studied
in several forms. In "Patterns of Communication in Consensus Protocols," Dwork
and Skeen explore the relationships among several different versions of the
consensus problem. To do this we define a new notion of reducibility. We first
define for any protocol P a partial ordering on the message-sending steps of an
execution of P. Intuitively, the sending of message ml precedes the sending of m2 if
and only if the contents of ml may be known to the sender of m2 when m2 is sent.
We call this partial ordering the communication pattern of the execution.

For any protocol Q, let the scheme of 0 denote the set of all communication
patterns of failure-free executions of Q. A problem may be characterized by the set
of schemes of protocols for the problem. We say P1 reduces to P2. written Pt I< P2,
if and only if the set of schemes for P1 contains the set of schemes for P2.

Intuitively, if P1 reduces to P2, then any protocol for P2 can solve P1 by relabeling
local states and padding messages. Consequently. the message complexity
(measured in number of messages) of P1 is not greater than the message complexity
of P2. Our method of characterizing and comparing problems is the principal
contribution of this paper. Given our taxonomy we use this notion of reducibility to
examine the relationships among six practical problems with varying safeness and
liveness properties.

This work will appear in this summer's Symposium on Principles of Distributed
Computing.

5. ELECTION OF A LEADER IN A DISTRIBUTED RING OF
PROCESSORS

Nancy Lynch collaborated with Greg Frederickson of Purdue on some work
involving bounds on the number of messages required to elect a leader in a
synchronous ring of processors. In this problem, there arern processnrs, which are
identical except that each has its own unique identifier. At various points in time,
one or more of the processors "wakes up" and initiate their participation in an
algorithm to decide on a leader. The relevant resources for such a distributed
computation are the total number of messages used and the amount of time
expended from the time that the first processor wakes up.

This problem has been studied by many researchers [[41. [5], [341, etc.]. The best
previous deterministic algorithms have used O(n log n) messages for either
bidirectional or unidircctional rings. These algorithms work for both the
synchronous and asynchronous models, and use comparisons of id's only. In
addition. Burns has established a lower bound of S2(n log n) on the number of

273

THEORY OF DISTRIBUTED SYSTEMS

4.2. Byzantine Agreement

Brian Coan has been working on randomized Byzantine agreement algorithms.
Such algorithms operate in a system of processes some of which can fail. The
computation proceeds in a series of rounds in which messages are sent and
received over a network that is fully connected and reliable. At each round, a
process can use the toss of a coin when it decides on its future actions. Correct
processes toss fair coins and send messages according to their programs. Failed
processes can send arbitrary messages. Each process starts the algorithm with an
input value. The goal is that after sending some messages each process will
produce an answer. There are two requirements on the answer produced by a
correct algorithm. If the same input was distributed to all processes, then this value
must be the answer of all correct processes. In any event, all correct processes
must agree on some common answer value.

Coan has developed a randomized Byzantine agreement algorithm that terminates
in an expected number of rounds that is smaller than the known lower bound (due to
Fischer and Lynch [17]) on the number of rounds required by a deterministic
Byzantine agreement algorithm. Further improvements have been made in the
algorithm by Chor. The algorithm is of interest for several reasons. It is simple and
efficient enough to be of practical importance. Also, it is an example of a situation
where randomization improves on the problem solving power of a system of
computers. Although randomization is vital to the algorithm, it is used sparingly.
The expected number of coin tosses per process is less than one. The algorithm
incorporates some ideas from a deterministic Byzantine agreement algorithm
developed previously by Turpin and Coan [38].

The best previously known randomized algorithm is due to Ben-Or [3]. It was
primarily developed to operate in an asynchronous system, but also operates in a
synchronous system. Ben-Or's algorithm has the disadvantage that it either requires
a large number of rounds of communication or a large number of processes. In the
synchronous case, the new algorithm improves on this substantially; although,
unfortunately, the new algorithm appears not to generalize to the asynchronous
case.

A related algorithm is due to M. Rabin [35]. Rabin's algorithm is more efficient than
our new algorithm; however, it achieves this efficiency at the expense of requiring
more powerful processes. In particular, his algorithm requires authentication and a
global coin toss by means of Shamir's shared secret. The shared secret must be
pre-computed by a trusted administrator. There are two disadvantages of this. It
reduces the amount of autonomy of individual nodes and the shared secret
represer)ts an expensive resource that is partially consumed each time the algorithm
is executed.

272

THEORY OF DISTRIBUTED SYSTEMS

Results of [18] have shown that the problem of reaching distributed consensus in
the presence of even a single faulty processor (even if it can only fail by stopping) is
unsolvable in a completely asynchronous environment. Results of [91 have refined
those of [18] by showing that the problem cannot be solved even in the case where
only the communication (but not the processors) is asynchronous or in the case
where only the processors are asynchronous. We considered the question of
weakening the requirements so that (1) processors never reach disagreement, no
matter how asynchronously the system runs, and (2) if there is ever some sufficiently
long interval of time during which the system behaves synchronously, then
agreement is guaranteed. We assume that the processors have no way of knowing
when this interval occurs.

We have found an algorithm requiring 2f + 1 processors (where f is the maximum
number of faulty processors) which solves this problem for the simplest kinds of
failures - just stopping, or else omitting some messages. The algorithm is similar in
general style to some "two-phase commit" algorithms in the literature. Our
algorithm can be modified to tolerate Byzantine faults with authentication, using 3f
+ 1 processors, and to tolerate Byzantine faults without authentication, using 4f + 1
processors. (A more complicated and costly algorithm can also be designed for this
latter case, using only 3t + 1 processors.) All of these bounds are tight.

All of the results described above were first proved for the case where the
processors are always synchronous (i.e. have built-in "clocks" which go at the same
rate) but communication is subject to variations in its syncnrony. We later
discovered that all of the results still hold for the case where both the processors and
the communication system are subject to variations. The basic idea in the latter case
is to have the processors implement fault-tolerant versions of Lamport's clock [28],
and use those clocks in place of the built-in clocks, to control the execution.

We also considered the case where communication is assumed to be synchronous
but processors are asynchronous. We have obtained algorithms and lower bounds
for various types of faults in those cases as well. Most, but not all of these results are
tight.

An interesting sidelight is that our algorithms also work unaer an alternative style
of "partially synchronous" assumption. Namely, we might assume that there exist
upper bounds on message delivery time (or on the ratio between speeds of
processors), but that those bounds are not known to the processors themselves. If
assumptions in this style are used in place of assumptions about intervals of
synchronous behavior, the same algorithms still work.

This work will appear in this summer's Symposium on Principles of Distributed
Computing.

271

THEORY OF DISTRIBUTED SYSTEMS

The special structure of state-transition specifications can be exploited to obtain
proof techniques. The Correctness Theorem gives sufficient conditions for an
implementation to be correct with respect to state-transition specifications. A
Completeness Theorem shows that correctness proofs of the form suggested by the
Correctness Theorem exist for correct implementations, assuming the specifications
satisfy certain well-formedness properties. A Consistency Theorem gives sufficient
conditions for showing state-transition specifications to be consistent.

An important concept for structuring specifications and correctness proofs is the
notion of rely- and guarantee-conditions. A rely-condition expresses conditions a
module relies on its environment to provide, and a guarantee-condition expresses
what the module guarantees to provide in return. Significant simplification in proofs
of correctness can result if specifications are written so that what each module
guarantees to its neighbor is exactly what the neighbor relies on the module to
provide. Under these conditions, the rely- and guarantee-conditions "cut" the
interdependence between modules in much the same way as a loop invariant cuts
the dependence of one iteration of a loop of the preceding and succeeding
iterations. In the thesis, a theorem is proved that shows how this idea can be
captured in terms of a useful proof technique.

The techniques developed in the thesis are applied to obtain specifications and
rigorous proofs of correctness for three example implementations: a synchronizer
module, for synchronizing the access of a number of user processes to a single
shared resource, a resource manager module, which allocates a finite set of
resources in response to user requests, and a message transmission module, which
uses the alternating bit protocol to construct a reliable message transmission service
from an unreliable substrate.

4. DISTRIBUTED CONSENSUS

A large amount of effort went into various problems of distributed consensus this
year. Nancy Lynch and Cynthia Dwork collaborated with Larry Stockmeyer on
results about reaching consensus in a partially synchronous environment. Brian
Coan obtained several results about Byzantine agreement. Cynthia Dwork
collaborated with Dale Skeen in work on communication patterns for distributed
consensus algorithms.

4.1. Reaching Consensus in a Partially Synchronous Environment

Cynthia Dwork, Nancy Lynch and Larry Stockmeyer of IBM San Jose collaborated
in work involving the problem of reaching consensus in a partially synchronous
environment.

270

THEORY OF DISTRIBUTED SYSTEMS

3. FOUNDATIONS OF A THEORY OF SPECIFICATION FOR
DISTRIBUTED SYSTEMS

Gene Stark's Ph.D. dissertation, entitled: "Foundations of a Theory of Specification
for Distributed Systems," is near completion. This thesis accomplishes the following
tasks: (1) the development of a mathematical model of distributed/concurrent
computer systems, which incorporates as fundamental notions the concepts of
hierarchy and modularity, (2) the use of the model as a basis for the investigation of
a particular approach. called state-transition specification, to specifying and proving
the correctness of distributed systems, and (3) the application of the state-transition
specification and proof techniques to some nontrivial example problems. Important
features of this work include: the integration of the notions of hierarchy and
modularity into a theory of specification, the ability to specify both safety (invariance)
and liveness (eventuality) properties of systems, and to reason about these
properties in a single framework, and the development, as an integral part of the
technique of state-transition specification, of a systematic method for constructing
proofs of correctness.

The mathematical model provides the following primitive notions: An event is an
instantaneous observable occurrence during the operation of a computer system.
An observation is a record of the event occurrences that took place during a
particular execution of a system. The behavior of a system is the set of all
observations that can be produced by the system, in all its executiins. Abstraction
maps and decomposition maps capture formally the notions of hierarchy and
modularity. An abstraction map maps an observation representing a detailed view of
system execution into an observation representing a less detailed view of the same
execution. A decomposition map is a vector of projections, each of which takes an
observation for a "composite" system and localizes that observation to a particular
component module. From these primitive notions, it is possible to define, in a
specification language- independent and programming-language-independent way,
the notions of implementation and correctness of an implementation, as well as the
notion of consistency of specifications.

The purpose of a specification is to describe a set of allowable observations for the
module being specified. In a state-transition specification, this set of allowable
observations is described by a pair fM, V>, where M is a kind of nondeterministic
machine that generates an observation as it executes, and V is a subset of the set of
computations of M, called the set of valid computations. An observation is allowable
if and only if it is produced in some valid computation. The state-transition approach
appears to provide a natural, straightforward strategy for turning an intuitive
understanding of the desired function of a module into a formal specification. Safety
properties are incorporated into the description of the machine M, and liveness
properties are captured by the set of valid computations V.

269

THEORY OF DISTRIBUTED SYSTEMS

Our algorithm can be modified to allow a faulty process which has been repaired to
synchronize its clock with the other nonfaulty processes. Let p be the process to be
reintegrated into the system. We assume that p can awaken at an arbitrary time
during an execution, perhaps during the middle of a round. It is necessary that p
identify an appropriate round i at which it can obtain all the clock values from
nonfaulty processes. Since p might awaken during the middle of a round, it will first
orient itself by observing the arriving messages, allowing part of a round to pass
before it begins to collect messages. After orienting itself, p continues to collect
clock values during an interval of time long enough for p to hear from all nonfaulty
processes. Immediately after p determines it has waited long enough, it carries out
the same averaging procedure described earlier and determines a correction to its
clock.

The problem solved by this algorithm is only that of maintaining synchronization of
local times once it has been established. There is, of course, the separate problem
of establishing such synchronization in the first place among processes whose
clocks have arbitrary values. Our second algorithm is a variant of our first, and is
used to establish the initial synchronization. We have also designed an interface
between the two algorithms, since we envision the processes running our second
algorithm until the desired degree of synchronization is obtained, and then switching
to the maintenance algorithm.

The structure of the algorithm is similar to that of the algorithm which maintains
synchronization. It runs in rounds. During each round, the processes exchange
clock values and use the same fault-tolerant averaging function as before to
calculate the corrections to their clocks. However, each round contains an
additional phase, in which the processes exchange messages to decide that they are
ready to begin the next round. This algorithm also synchronizes the clocks to within
about 4e.

Our algorithms will appear in this year's Symposium on Principles of Distributed
Computing, in a special session devoted to clock synchronization.

Several results similar to last year's lower bound result [31] appeared this year in
[10]. It became apparent that all of these results are addressing questions which are
special cases of a single general problem: that of determining possible closeness of
synchronization for arbitrary network graphs with arbitrary communication
uncertainties. With Joe Halpern, we spent some time attempting to solve the general
problem, but have so far not obtained any interesting results.

Mandy Ng has simulated our clock synchronization algorithm as a UROP project.

268

THEORY OF DISTRtBUTED SYSTEMS

timer to go off at a specified time in the future. Formally, timers are treated similarly
to messages between processes. The system is interrupt-driven in that a process
only takes a step when a message (i.e., a timer or a message fron another process)
arrives. We consider only the case where the message network is completely
connected. All messages are delivered within a fixed amount of time plus or minus
some uncertainty.

Keeping the local times of processes in a distributed system synchronized in the
presence of arbitrary faults is important in many applications and is an interesting
problem in its own right. Taking into account the clocks' drift from real time and
varying message delivery times makes the problem more realistic and more
challenging. In order to be truly useful, a solution to this problem must allow faulty
processes that have recovered to be reintegrated into the system. Our first algorithm
meets these requirements, assuming that the clocks are initially close together and
that fewer than one third of the processes are faulty. (A result in [10] indicates that
this proportion of faulty processes is the largest that any algorithm, which does not
use unforgeable digital signatures, can tolerate.)

Our algorithm runs in rounds (as do those in [29], [241 and [33]), resynchronizing at
each round to correct for the clocks drifting out of synchrony. The size of the
adjustment made to a clock at each round is independent of the number of faulty
processes. At each round, n2 messages are required, where n is the total number of
processes. The closeness of synchronization achieved depends only on the initial
closeness of synchronization, the message delivery time and its uncertainty, and the
drift rate. We give explicit bounds on how the difference between the clock values
and real time grows.

At the beginning of each round, every nonfaulty process broadcasts its clock value
and then waits a bounded amount of time on its clock, long enough to ensure that
clock values are received from all nonfaulty processes. After waiting, the process
averages the arrival times of all the messages received, using a fault-tolerant
averaging function. The resulting average is used to calculate an adjustment to the
process' clock.

The fault-tolerant averaging function is derived from those used in [12] for
reaching approximate agreement. The function is designed to be immune to some
fixed maximum number, f, of faults. It first throws out the f highest and f lowest
values, and then applies some ordinary averaging function to the remaining values.
We choose the midpoint of the range of the remaining values, to be specific. The
properties of the fault-tolerant averaging function allow the distance between the
clocks to be halved (roughly) at each round. Consequently, the averaging function
can be considered the heart of the algorithm.

This algorithm can maintain a closeness of synchronization of approximately 4e,
where E is the uncertainty in the message delivery tinge.

267

THEORY OF DISTRIBUTED SYSTEMS

1. OVERVIEW

This year, the Theory of Distributed Systems Group worked a large variety of
individual problems within the theory of distributed computing. Particular emphasis
was placed on problems and models involving time, and on reliability issues.
Specifically, we studied the following problems:

(1) Software clock synchronization,

(2) Foundations of a theory of specification for distributed systems,

(3) Distributed consensus,

(4) Election of a leader in a distributed ring of processors,

(5) Distributed network algorithms,

(6) Diagnosis of faulty components, and

(7) Distributed network resource allocation.

In addition, other work, not directly related to theory of distributed computing,
included:

(8) Unification,

(9) Combinatorics and graph algorithms, and

(10) Development of a CLU parser-generator.

2. SOFTWARE CLOCK SYNCHRONIZATION

Jennifer Lundelius and Nancy Lynch have continued work during the past year on
the problem of synchronizing clocks in a distributed system. The formal model
developed earlier to describe systems of distributed processes with local clocks has
been polished (and a simple "language" for describin, processes in this model has
been developed). Last year's major result, a lower I ound on the closeness with
which clocks can be synchronized in the presence of uncertainty of message delay,
has been written up this year and submitted for publication [31]. This year's major
results are two new fault-tolerant algorithms, one to maintain synchronization among
processes whose clocks initially are close together, and another to establish
synchronization in the first place.

In our model, each process has a read-only physical clock. By adding a correction
to the physical clock time, the process obtains a local time. The process can set a

266

THEORY OF DISTRIBUTED SYSTEMS

Academic Staff

N. A. Lynch, Group Leader

Graduate Students
B. Coan E. Stark
J. Lundelius

Undergraduate Students

M. Ng N. Savasta

Support Staff

E. Pothier

Visitors

B. Awerbuch C. Dwork
J. Burns S. Zaks

THEORY OF COMPUTATION

19. Micali, S. "The Knowledge Computable from a Communication,"

University of California, Berkeley, March 1984
University of Chicago, March 1984
MIT, Laboratory for Computer Science, May 1984
Harvard University, May 1984

20. Maley, M. "VLSI Routing of Planar Interconnections," VLSI Research
Review, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

263

THEORY OF COMPUTATION

MIT, Cambridge, MA, March 1984.
AT&T Bell Labs, Homdale, NJ, March 1984.
IBM, Yorktown Heights, NY, April 1984.
Xerox PARC. Palo Alto, CA, April 1984.
IBM, San Jose, CA, April 1984.

10. Rivest, R.L. "Reflections on Artificial Intelligence," Stanford University,
Stanford, CA, 1984.

11. Rivest, R.L. "On the Crossing Placement Problem," Stanford University,
Stanford, CA, 1984.

12. Rivest, R.L. "Estimating a Probability Using Finite Memory," Stanford
University, Stanford, CA, 1984.

13. Rivest, R.L. "An Overview of Special-Purpose VLSI Implementations of
the RSA Cryptosystem," CRYPTO 84 Conference, Paris, France, 1984.

14. Sherman, A. "The PI System's Algorithms for Placing Modules on a
Custom VLSI Chip," MIT VLSI Research Review, Cambridge, MA,
December 17, 1983.

15. Sherman, A. "Basic: A Dangerous Impediment to Computer Literacy,"
presented to the PRISM program for the gifted and talented at Lafayette
High School, Williamsburg, VA March 30,1984,

16. Micali, S. "How to Simultaneously Exchange a Secret Bit by Flipping a
Symmetrically-Biased Coin,"

Universitat Zurich, Institut fur Angewandte Mathematik,
August 1983

24th FOCS Conference, Tucson, AZ, November 1983
University of Chicago, March 1984

17. Micali, S. "How to Construct Random Functions,"

University of Toronto, December 1983
University of Rome, January 1984
University of Pittsburgh, February 1984
University of California, March 1984
IBM, San Jose, CA, March 1984
University of Chicago, March 1984

18. Micali, S. "An Oblivious Transfer Provably Equivalent to Factoring,"
Eurocrypt '84, Paris, France, April 1984

262

THEORY OF COMPUTATION

2. Goldwasser, S. "An Efficient Probabilistic Encryption Scheme," Yale
University, May 1984.

3. Goldwasser, S. "Strong Signature Schemes,"

University of California at Berkeley, June 1983
Carnegie-Mellon University, October 1983
Massachusetts Institute of Technology, October 1983
The Technion, Haifa, Israel, January 1984

4. Goldwasser, S. "Digital Signatures and Authentication," IBM/MIT Joint
Conference on Security, Cambridge, MA, May 1984.

5. Goldwasser, S. "How to Construct Random Functions,"
Weizmann Institute, Rehovot, Israel, January 1984
Hebrew University, Jerusalem, Israel, January 1984
Massachusetts Institute of Technology, February 1984
IBM-Yorktown Heights, May 1984
Yale University, May 1984
Harvard University, May 1984
University of Washington, Seattle, June 1984
Stanford University, June 1984

6. Goldwasser, S. "Knowledge Complexity,"
Yale University, June 1983
IBM-San Jose, June 1984

7. Goldwasser, S. "On Using the XOR Function as a Security Amplifier:
Applications to Factoring Based Encryption,"

Massachusetts Institute of Technology, November 1983
Eurocrypt '84, Paris, France, April 1984

8. Goldwasser, S. "Use of Cryptography in Today's Technology," North-
East Regional ACM Conference on Integrating the Workplace, Lowell,
MA, March 1984.

9. Mitchell, J. "Types in Lambda Calculus and Other Programming
Languages,"

261

THEORY OF COMPUTATION

22. Leighton, T. "Circulants and the Characterization of Vertex-Transitive
Graphs," Journal Research National Bureau of Standards, 88, 6,
(Novcmber-Docember 1983), 395-402.

23. Leighton, T. "On the Decomposition of Vertex-Trans ve Graphs into
Multicycles, Journal Research National Bureau of Standards, 88, 6,
(November-December 1983), 403-410.

24. Leighton, T. "New Lower Bound Techniques for VLSI," Mathematical
Systems Theory, 17, 1, (Ar~il 1984), 4770.

25. Leighton, T. "Parallel Computation Using Meshes of Trees,"
Proceedings 1983 International Workshop on Graphtheoretic Concepts
in Computer Science, M. Nagl and J. Perl (eds.), Trauner-Verlag, Linz,
West Germany, 1984, 200-218.

26. Leighton, T. "Tight Bounds on the Complexity of Parallel Sorting,"
Proceedings 16th Symposium on Theory of Computing, May 1984,
71-80.

27. Leighton, T. and Rivest, R. "Estimating a Probability Using Finite
Memory," Proceedings of the Conference on the Foundations of
Computation Theory, August 1983, Lecture Notes in Computer Science
Series # 158, 255-269.

28. Leighton T. and Rosenberg, A. "Automatic Generation of Three-
Dimensional Circuit Layouts," Proceedings IEEE Conference on
Computer Design, November 1983, 633-636.

29. Bui, T., Chaudhuri, S., Leighton, T. and Sipser, M. "Graph Bisection
Algorithms with Good Average Case Behavior," Submitted to the 25th
FOCS Conference.

Thesis in Progress

1. Maley, M. "Routing and Compaction of Planar VLSI Layouts," S.M.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected September 1984.

Talks

1. Kornhauser, D.. "Generalized '15-puzzles' and the Diameter of
Permutation Groups," MIT Laboratory for Computer Science,
Cambridge, MA, April 19, 1984.

260

THEOR ' OF DISTRIBUTED SYSTEMS

includes that of Burns [4], Dolev et al. [11]. Frederickson and Lynch [20], Gallager et
al. [22] and Peterson [34].

Several problems that require reaching common knowledge have been studied.
The problems considered include that of deciding distinctness and that of finding a
majority value in the set of initial values. Lower bounds are derived in [21], primarily
for ring networks. Following Frederickson and Lynch [201, we consider comparison
algorithms to obtain lower bounds on message complexity for these problems. For
unrestricted algorithms the bit complexity is usually of interest. We study it for the
distinctness problem. using the technique developed in Yao [39]. The problems
considered are quite fundamental: algorithms that achieve common knowledge often
involve one of them. Thus, it is believed that this study will help our understanding of

the complexity of other problems on various networks.

The sorting problem has been extensively studied for sequential algorithms; in
Zaks [40] such a study is made for distributed networks. We study the problems of
sorting and ranking processors that have (not necessarily distinct) initial values.
Assuming a tree network, an algorithm for the ranking problem is presented that
uses, in the worst case, a number of messages that is shown to be best possible. The
algorithm is then extended to perform sorting, using again the fewest number of
messages in the worst case. The expected behavior of these algorithms is analyzed
for various classes of trees. The ranking algorithm is an improvement upon the
algorithm in Korach et al. [27] in its worst case performance, its average case
performance, and its use of concurrency.

Other work has dealt with distributed algorithms for a complete network. For such
algorithms, it is generally assumed that a node cannot distinguish between its
incident edges. In Korach et al. [261. [25] this model is used, and finding a spanning
tree is shown to require strictly fewer messages than finding a minimum spanning
tree (thus partially answering a question raised by Gallager [22]). In Santoro et al.
[37] we further investiq.ate the difference between the problem of finding a minimum
spanning tree and tinding any spanning tree when the underlying network is
complete. We show that in a certain model of a complete network -where the
processors have a partial ir'ormation of where the edges are leading to - the
distinction between these two problems is even more profound; namely, spanning
tree is shown to be as easy as possible (linear in the size of the network), while
minimum spanning tree is shown to be as hard as possible (quadratic in the size).

Some of the preceding work [261 will be presented at this summer's Symposium on
Principles of Distributed Computing.

Baruch Awerbuch has been working on the problem of breadth-first search (BFS)
in a dist,ibuted network. In a synchronous network there exists a fairly simple

algorithm which performs breadth-first search in O(V) time and O(E) messages.

275

THEORY OF DISTRIBUTED SYSTEMS

Surprisingly enough, performing BFS in an asynchronous network turns out to be a
much more difficult task. Awerbuch [2] proposes to implement BFS by
synchronizing the network and using a synchronous algorithm. This approach yields
O(V**2) messages and O(V log V) time: its communication cost may be high for
sparse networks. The algorithm due to Fredrickson [19] requires O(VE**1/2) both
in terms of messages and time.

Awerbuch has recently found a new distributed BFS algorithm, which requires just
O(E+V**1.6) messages and time. The idea of the algorithm is to use partial
synchronization and to change the degree of synchronization according to the
density of the network. An open question is whether this result can be further
improved.

7. DIAGNOSIS OF FAULTY COMPONENTS

Nancy Lynch has been collaborating with researchers at Draper Laboratories, on

problems of fault-tolerance arising in real.time processing systems with high

reliability requirements. Among the problems considered was a problem of
diagnosing and replacing faulty components in a long-lived system, where the
symptoms of faults arise for pairs of components. (For example, a transmitter-
receiver pair may fail to complete a transmission successfully, but it might not be
known which component is faulty.)

The problem turns out to be formalizable as an on-line version of the vertex cover
problem. It has been shown that a trivial deterministic algorithm exists which can
achieve a worst-case ratio of two between the number of components replaced and
the number actually faulty. Moreover, no deterministic or probabilistic algorithm can
do any better. (That is, no probabilistic algorithm can achieve an expected ratio
better than two, where the expectation is taken over the probabilistic choices in the
algorithm only.)

On the other hand, if reasonable probabilistic assumptions are made about the
patterns of occurrence of faults, then a ratio near 3/2 is achievable.

8. DISTRIBUTED NETWORK RESOURCE ALLOCATION

Nancy Lynch collaborated with Mike Fischer and Nancy Griffeth in completing
some older work on optimal allocatirn of resources in a tree network. There are two
sets of results. The first [15] deals with optimal placements of resources within a
tree: the placements are intendcd to optimize the expected cost of a minimum
matching between the resources and requests arriving according to a probability

distribution. A new result obtained this year is an upper bound on the expected cost

276

THEORY OF DISTRIBUTED SYSTEMS

of certain near-optimal placements within arbitrary trees. (Previously, we only had
results for balanced trees.)

The second [16] is a difficult probabilistic analysis of a distributed algorithm which
matches arriving requests to resources placed within the network. This analysis has
been polished up.

The following work, while not directly related to the theory of distributed
computing, was carried out within our research group.

9. UNIFICATION

Cynthia Dwork has collaborated with John Mitchell and Paris Kanellakis in work on
unification. Unification of terms is an important step in resolution theorem proving
[36] with applications to a variety of symbolic computation problems. In particular,
unification is used in PROLOG interpreters [6], type inference algorithms [33], and
term rewriting systems [23].

Informally, two symbolic terms s and t are unifiable if there is some way of
substituting additional terms for variables in s and t so that both become the same
term. All occurrences of a variable x in both s and t must be replaced by the same
term. For example, the terms f(x,x) and f(g(y),g(g(z))) may be unified by substituting
g(z) for y and g(g(z)) for x. A unification problem like "unify f(tl,t2) and f(t3,t4)" may
be decomposed into two subproblems "unify ti and t3" and "unify t2 and t4".
However, these two problems cannot be solved entirely separately in parallel. If
some variable x occurs in both t1 and t4, for example, then the solutions to the
subproblems must be coordinated so that both substitute the same term for x.

There are several variations of the unification problem. For example, a type
inference ale ,rithm may construct labeled graphs which represent terms that must
be unified, acceptable result of unification, in this case, may be a labeled graph
with a cycle. Labeled graphs with cycles represent types defined by recursion [32],
or, if interpreted as terms, represent "infinite terms" to be substituted for variables.
Using the infinite term f(f(f(...))),'we can unify x and f(x), something we could not do
otherwise. Unrestricted unification also appears in many PROLOG interpreters;
those omitting the occur test [6]. Anotner variation on unification is the special case
in which the labeled graphs are from a class of tree-like directed acyclic graphs. The
complexity of unification on tree-like graphs is precisely the complexity of unification
on symbolic representations of terms, as opposed to the complexity as a function of
the size of more concise graph representations. For this case it was known that
unification is hard for co.NLOGSPACE [30]. This did not exclude the possibility of
fast parallel algorithms (i.e., algorithms requiring time poly-logarithmic in the length
of the input). Moreover, no lower bound was known for unrestricted unification. In

277

THEORY OF DISTRIBUTED SYSTEMS

"On the Sequential Nature of Unification", Dwork, Kanellakis, and Mitchell ([14])
show that all of the above variants of unification are log-space complete for P, and
hence are unlikely to have fast parallel solutions.

One important special case of unification can be solved quickly in parallel. This
problem, called term matching, arises in term rewriting. A term s matches a term t if t
is a substitution instance of s. The rewrite rule I - r may be used to rewrite a term t
whenever I matches t. [14] shows that matching can be accomplished in log 2n time
on a PRAM, where n is the length of the input, using a number of processors
polynomial in n. The algorithm combines parallel transitive closure of a directed
acyclic graph with parallel computation of connected components of an undirected
graph. Also, matching is in NLOGSPACE, and for tree-like graphs it is in
DLOGSPACE.

10. COMBINATORICS AND GRAPH ALGORITHMS

Shmuel Zaks has worked on several problems involving combinatorics and graph
algorithms. Revisions have been made in [41] and [7]. The paper [41] presents a
new algorithm for generating all the permutations of the numbers 1n...,n; it generates
the next permutation by reversing a certain suffix of its predecessor. In [7] a very
general enumeration formula for occurrences of patterns in certain families ol trees
(like ordered trees or binary trees) is derived, using an extension of the Cycle Lemma
of Dvoretzky and Motzkin [13]. Many known results in this area fit within its
framework. This formula is very handy in analyzing expected-time behaviors of
algorithms acting on these families of trees.

Using a new correspondence between ordered trees and non-crossing partitions,
and using results previously stated in terms of trees, some notes are made in
Dershowitz and Zaks [8] regarding the set of non-crossing partitions.

A planarity test for unflippable modules is developed in Zaks [42]; it improves upon
a previous algorithm of Amir [1] in two aspects: it does not require any additional
memory, and it can be easily implemented by a parallel algorithm.

11. ACLU PARSER-GENERATOR

Neil Savasta wrote a new parser-generator program, patterned after the widely-
used C program YACC. This new program was integrated into the undergraduate
compiler course this spring.

278

THEORY OF DISTRIBUTED SYSTEMS

12. PLANS

The Theory of Distributed Systems Group plans to continue working on problems
involving reliability and time in distributed systems, as well as problems involving
particular high.level constructs for reliable distributed computing.

Plans for the coming year include visits by Drs. Baruch Awerbuch, James Burns,
Cynthia Dwork, Paris Kanellakis and Michael Merritt.

279

THEORY OF DISTRIBUTED SYSTEMS

References

1. Amir, A. "A Direct Linear-time Planarity Test for Unflippable Modules,"
MIT Laboratory for Computer Science, Cambridge, MA, May 1984.

2. Awerbuch, B. "Efficient Network Synchronization Protocol,"
Proceedings of the 16th Annual ACM Symposium on Theory of
Computing, Washington, D C, April 30-May 2,1984.

3. Ben-Or, M. "Another Advantage of Free Choice: Completely
Asynchronous Agreement Protocols," Proceedings of Second Annual
ACM SIGACT-SIGOPS Agreement Protocols, Proceedings of Second
Annual Symposium on Principles of Distributed Computing, August
17-19, 1983.

4. Burns, J. E. "A Formal Model for Message Passing Systems," Technical
Report 91, Indiana University, September 1980.

5. Chang, E. and Roberts, R. "An Improved Algorithm for Decentralized
Extrema-finding in Circular Configurations of Processes," (1979)
281-283.

6. Clocksin, W.F. and Mellish, C.S. "Programming in Prolog," Springer-
Verlag (1981).

7. Dershowitz, N. and Zaks, S. "Patterns in Trees," Proceedings of the 9th
Colloquium on Trees in Algebra and Programming, Bordeaux, France,
March 1984.

8. Dershowitz, N. and Zaks, S. "Ordered Trees and Non-crossing
Partitions," to appear.

9. Dolev, D., Dwork, C. and Stockmeyer, L. "On the Minimal Synchronism
Needed for Distributed Consensus," 23rd Symposium on the
Foundations of Computer Science, November 1983.

10. Dolev, D., Halpern, J. and Strong, R. "On the Possibility and Impossibility
of Achieving Clock Synchronization," Proceedings of the 16th Annual
ACM Symposium on Theory of Computing, Washington, DC, April 30-
May 2, 1984.

11. Dolev, D., Klawe, M. and Rodeh, M. "An O(nlogn) Unidirectional
Distributed Algorithm for Extrema Finding in a Circle," Journal of
Algorithms, 3 (1982), 245-260.

280

THEORY OF DISTRIBUTED SYSTEMS

12. Dolev, D., Lynch, N., Pinter, S., Stark, E. and Weihl, W. "Reaching
Approximate Agreement in the Presence of Faults," Proceedings of the
3rd Annual IEEE Symposium on Distributed Software and Database
Systems, 1983.

13. Dvoretzky, A. and Motzkin, T. "A Problem of Arrangements," Duke
Mathematical Journal, 14, 305-313.

14. Dwork, C., Kanellakis, P. and Mitchell, J. "On the Sequential Nature of
Unification," to appear in Journal of Logic Programming, 1, 1 (1984).

15. Fischer, M., Griffeth, N. Guibas, L. and Lynch, N. "Optimal Placement of
Identical Resources in a Distributed Network," Proceedings of 2nd
International Conference on Distributed Computing, 1981

16. Fischer, M., Griffeth, N., Guibas, L. and Lynch, N. "Probabilistic Analysis
of a Network Resource Allocation Algorithm," AMS Workshop on
Probabilistic Algorithms (Abstract Only), June 1982.

17. Fischer, M. and Lynch, N. A. "A Lower Bound for the Time to Assure
Interactive Consistency," Information Processing Letters, 14, 4 (June
1982), 183-186.

18. Fischer, M., Lynch, N. and Paterson, M. "Impossibility of Distributed
Consensus with One Faulty Process," MIT/LCS/TR-282, MIT
Laboratory for Computer Science, Cambridge, MA.

19. Frederickson, G. N. "A Single Source Shortest Path Algorithm for a
Planar Distributed Network," to appear in Proceedings of the 3rd Annual
ACM Symposium on Principles of Distributed Computing, August 27-29,
1984, Vancouver, BC, Canada.

20. Frederickson, G. N. and Lynch, N. A. "The Impact of Synchronous
Communication on the Problem of Electing a Leader in a Ring,"
Proceedings of the 16th Annual ACM Symposium on Theory of
Computing, Washington DC, April 30- May 2, 1984, 493-503.

21. Gafni, E., Loui, M. C., Tiwari, P., West, D. and Zaks, S. "Lower Bounds
on Common Knowledge in Distributed Algorithms," to appear.

22. Gallager, R. G., Humblet, P. A. and Spira, P. M. "A Distributed Algorithm
for Minimum Spanning Tree," Transactions of Programming Languages
and Systems, 5, 1 (1983), 66-77.

281

THEORY OF DISTRIBUTED SYSTEMS

23. Guttag, J.V., Kapur, D. and Musser, D.R. "On Proving Uniform
Termination and Restricted Termination of Rewriting Systems," SIAM
J. Computing, 12,1 (1983), 189-214.

24. Halpern, J., Simons, B. and Strong, R. "Fault-tolerant Clock
Synchronization," to appear in Proceedings of the 3rd Annual ACM
Symposium on Principles of Distributed Computing, August 27-29,1984,
Vancouver, BC, Canada.

25. Korach, E., Moran, S. and Zaks, S. "Finding a Minimum Spanning Tree
Can be Harder than Finding a Spanning Tree in Distributed Networks,"
Technical Report-126, IBM Scientific Center, Haifa, Israel, November
1983.

26. Korach, E., Moran, S. and Zaks, S. "Tight Lower and Upper Bounds for
Some Distributed Algorithms for a Complete Network of Processors,"
Technical Report-124, IBM Scientific Center, Haifa, Israel, November
1983, to appear in Proceedings of the 3rd Annual ACM Symposium on
Principles o1 Distributed Computing, August 27.29, 1984, Vancouver,
BC, Canada.

27. Korach, E., Rotem, D. and Santoro, N. "Distributed Algorithms for
Ranking the Nodes of a Network," Proceedings of the 13th Southeastern
Conference on Combinatorics, Graph Theory and Computing, 1982,
235-246.

28. Lamport, L. "Time, Clocks, and the Ordering of Events in a Distributed
System," Communications of the ACM, 21, 7 (July 1978).

29. Lamport, L. and Melliar-Smith, P. M. "Synchronizing Clocks in the
Presence of Faults," SRI International Report, (March 1982).

30. Lewis, H. R. and Statman, R. "Unifiability is Complete for Co-
NLOGSPACE," IPL, 15, 5 (1982), 220-222.

31. Lundelius, J. and Lynch, N. "A New Fault-tolerant Algorithm for Clock
Synchronization," to appear.

32. MacOueen, D., Plotkin, G. and Sethi, R. "An Ideal Model for Recursive
Polymorphic Types," Proceedings 1984 Principles of Programming
Languages.

33. Marzullo, K. "Loosely-Coupled Distributed Services: A Distributed Time
Service," Ph.D. dissertation, Stanford University, Stanford, CA, 1983.

282

THEORY OF DISTRIBUTED SYSTEMS

34. Peterson, G. L. "An O(nlogn) Unidirectional Algorithm for the Circular
Extrema Problem," Transactions of Programming Languages and
Systems, 4 (1982), 758-762.

35. Rabin, M. "Randomized Byzantine Generals," Proceedings 24th Annual
Symposium on Foundations of Computer Science, November 7-9, 1983.

36. Robinson, J. A. "A Machine Oriented Logic Based on the Resolution
Principle," Journal of the ACM, 12, 1 (1965), 23-41.

37. Santoro, N., Urrotia, J. and Zaks, S. "Distributed Algorithms for
Spanning Trees and Minimum Spanning Trees in a Complete Network
with a Weak Sense of Orientation," to appear.

38. Turpin, R. and Coan, B. "Extending Binary Byzantine Agreement to
Multivalued Byzantine Agreement," Information Processing Letters, 18,
2 (February 1984), 73-76.

39. Yao, A. C. "Some Complexity Questions Related to Distributive
Computing," Proceedings of the 11th Annual ACM Symposium on
Theory of Computing, New York, 1979, 209-213.

40. Zaks, S. "Optimal Distributed Algorithms for Ranking and Sorting," to
appear.

41. Zaks, S. "A New Algorithm for Generation of Permutations," to appear in
BIT.

42. Zaks, S. "A Simple Linear-time Planarity Test for Unflippable Modules,"

to appear.

Publications

1. Dershowitz, N. and Zaks, S. "Ordered Trees and Non-crossing
Partitions," to appear.

2. Dershowitz, N. and Zaks, S. "Patterns in Trees," Proceedings of the 9th
Colloquium on Trees in Algebra and Programming, Bordeaux, France,
March 1984.

3. Dolev, D., Lynch, N., Pinter, S., Stark, E. and Weihl, W. "Reaching
Approximate Agreement in the Presence of Faults," Proceedings of 3rd
Annual IEEE ,iymposium on Reliability in Distributed Software and
Database Systems, 1983.

283

THEORY OF DISTRIBUTED SYSTEMS

4. Dwork, C., Lynch, N. and Stockmeyer, L. "Consensus in the Presence of
Partial Synchrony," to appear in Proceedings of the 3rd ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, August
27-29, 1984, Vancouver, BC, Canada.

5. Dwork, C. and Skeen, D. "Patterns of Communication in Consensus
Protocols," to appear in Proceedings of the 3rd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, August 27 29,1984,
Vancouver, BC, Canada.

6. Dwork, C., Kanellakis, P. and Mitchell, J. "On the Sequential Nature of
Unification," to appear in Journal of Logic Programming, 1, 1 (1984).

7. Fischer, M., Griffeth, N. and Lynch, N. "Optimal Placement of Identical
Resources in a Distributed Network," to appear in Information and
Control.

8. Fischer, M., Griffeth, N., Guibas, L. and Lynch, N. "Probabilistic Analysis
of a Network Resource Allocation Algorithm," to appear in lformation
and Control.

9. Fischer, M., Lynch, N. and Paterson, M. "Impossibility of Distributed
Consensus with One Faulty Process," to appear in Journal of the ACM.

10. Frederickson, G.N. and Lynch, N.A. "The Impact of Synchronous
Communication on the Problem of Electing a Leader in a Ring,"
Proceedings of the 16th Annual ACM Symposium on Theory of
Computing, Washington, DC, April 30-May 2,1984, 493-503.

11. Gafni, E., Loui, M. C., Tiwari, P., West, D. and Zaks, S. "Lower Bounds
on Common Knowledge in Distributed Algorithms," to appear.

12. Lundelius, J. and Lynch, N. "A New Fault-tolerant Algorithm for Clock
Synchronization," to appear in Proceedings of the 3rd ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, August
27-29, 1984, Vancouver, BC, Canada.

13. Lundelius, J. and Lynch, N. "An Upper and Lower Bound for Clock
Synchronization," to appear in Information and Control.

14. Lynch, N. "Concurrency Control for Resilient Nested Transactions," to
appear.

284

THEORY OF DISTRIBUTED SYSTEMS

15. Lynch, N., Arjomandi, E. and Fischer, M. "Efficiency of Synchronous
Versus Asynchronous Distributed Systems," Journal of the Association
For Computing Machinery, 30, 3 (July 1983), 449-456.

16. Lynch, N.A. and Fischer, M.J. "A Technique for Decomposing
Algorithms Which Use a Single Shared Variable," Journal of Computer
and System Sciences, 27, 3 (December 1983) 350-377.

17. Santoro, N., Urrotia, J. and Zaks. S. "Distributed Algorithms for
Spanning Trees and Minimum Spanning Trees in a Complete Network
with a Weak Sense of Orientation," to appear.

18. Turpin, R. and Coan. B. "Extending Binary Byzantine Agreement to
Multivalued Byzantine Agreement," Information Processing Letters, 18,
2 (February 1984), 73-76.

19. Zaks, S. "A New Algorithm for Generation of Permutations," to appear in
BIT.

20. Zaks, S. "Optimal Distributed Algorithms for Ranking and Sorting," to
appear.

Thesis Completed

1. Savasta, N. "Implementation of a Compiler-compiler," S.B. thesis, MIT
Department "f Electrical Engineering and Computer Science,
Cambridge, MA, June 1984.

Theses in Progress

1. Coan, B. "Some Fundamental Problems in Distributed Systems," Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science. Cambridge, MA, expected May 1986.

2. Lundelius, J. "Synchronizing Clocks in a Distributed System," S.M.
thesis. MIT Department of Electrical Engineering and Computer
Science. Cambridge, MA, expected August 1984.

3. Stark, E.W. "Foundations of a Theory of Specification for Distributed
Systems." Ph.D. dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected August 1984.

285

THEORY OF DISTRIBUTED SYSTEMS

Talks

1. Dwork, C. "The Inherent Cost of Nonblocking Commitment," 2nd
Symposium on the Principles of Distributed Computing, August 1983.

2. Dwork, C. "On the Minimal Synchronism Needed for Distributed
Consensus," 23rd Symposium on the Foundations of Computer
Science, November 1983.

3. Dwork, C. "The Consensus Game,"
University of California at Berkeley, Fall 1983;
University of Washington, Seattle, Fall 1983;
IBM Research, San Jose, CA, Fall 1983;
New York University, Fall 1983;

4. Dwork, C. "Consensus in the Presence of Partial Synchrony,"
AT&T Bell Laboratories, Murray Hill, NJ.
IBM Research, Yorktown Heights, NY.

5. Lynch, N. A. "The Impact of Synchronous Communication on the
Problem of Electing a Leader in a Ring,"

6. Brown University, Fall, 1983;
Georgia Institute of Technology, Winter, 1984;
Computer Corporation of America, Spring, 1984;
Symposiun on Theory of Computing, Spring, 1984;

7. Stark, E.W. "Reaching Approximate Agreement in the Presence of
Faults," IEEE Symposium on Reliability it) Distributed Software and
Database Systems, October 1983.

8. Stark, E.W. "Assigning Meaning to Specifications,"
University of Massachussets, Amherst, MA, Spring 1984;
AT&T Bell Laboratories, Murray Hill, NJ, Spring 1984;
Tufts University, Medford, MA, Spring 1984;
State University of New York, Stony Brook, NY,
Spring 1984;
Cornell University Spring 1984;
University of Michigan Spring 1984;
University of Texas, Austin, TX, Spring 1984;

9. Zaks, S. "Tight Lower and Upper Bounds for Distributed Algorithms for a
Complete Network of Processors,"

286

THEORY OF DISTRIBUTED SYSTEMS

Harvard University, Cambridge, MA, Fall, 1983
University of Illinois at Urbana Champaign, Fall, 1983
Brandeis Univorsity, Fall, 1983
MIT, Cambridge, MA, Spring, 1984
IBM - Thomas J. Watson Research Center, Spring, 1984
G.E. Schenectady Research Center, Spring, 1984
University of Toronto, Spring, 1984
Carleton University, Spring, 1984

10. Zaks, S. "The Cycle Lemma and Ordered Trees," MIT, Cambridge, MA,
Fall, 1983.

287

PUBLICATIONS

Technical Memoranda

TM-10 4 Jackson, J.N.
Interactive Design Coordination for the Building Industry, June
1970, AD 708-400

TM-11 Ward, P.W.
Description and Flow Chart of the PDP-7/9 Communications
Package, July 1970, AD 711-379

TM-12 Graham, R.M.
File Management and Related Topics June 12, 1970, September
1970. AD 712 068

TM-13 Graham,, i.M.
Use of High Level Languages for Systems Programming,
September 1970, AD 711-965

TM-14 Vogt. C.M.
Suspension of Processes in a Multi-processing Computer
System, September 1970, AD 713-989

TM-15 Zilles, S.N.
An Expansion of the Data Structuring Capabilities of PAL,
October 1970, AD 720-761

TM-16 Bruere-Dawson, G.
Pseudo-Random Sequences. October 1970, AD 713-852

TM- 17 Goodman, L.I.
Complexity Measures for Programming Languages, September
1971. AD 729-011

TM-18 Reprinted as TR 85

TM-19 Fenichel, R.R.
A New List-Tracing Algor",-n, October 1970, AD 714-522

4
TMs 1 9 were never issued.

AD-AISS 299 LABORAITORY FOR COPUTER SCIENCE PIOIESS REPORT 21 JULY i4/1
83"JUNE 841U1 MASSACHUSETTS INST OF TECH CAURIDOE LAS
FOR COMPUIER SCIENCE I OERTOUZOS 4UN 4(INC| ASSIF lED FIG 9/2 N[

MENDIIIIIIIfIIIIIL II

W--

" - 1111M--2

IIIIINIll~gIIIIIg

-~ ~ ~ ~~ 1. - -0IIm I

PUBLICATIONS

TM-20 Jones, T.L.
A Computer Model of Simple Forms of Learning, January 1971,
AD 720-337

TM-21 Goldstein, R.C.
The Substantive Use of Computers For Intellectual Activities,
April 1971, AD 721-618

TM-22 Wells, D.M.
Transmission Of Information Between A Man-Machine Decision
System And Its Environment, April 1971, AD 722-837

TM-23 Strnad, A.J.
The Relational Approach to the Management of Data Bases, April
1971, AD 721-619

TM-24 Goldstein, R.C. and Strnad, A.J.
The MacAIMS Data Management System, April 1971, AD 721-620

TM-25 Goldstein, R.C.
Helping People Think, April 1971, AD 721-998

TM-26 lazeolla, G.G.
Modeling and Decomposition of Information Systems for
Performance Evaluation, June 1971, AD 733-965

TM-27 Bagchi, A.
Economy of Descriptions and Minimal Indices, January 1972, AD
736-960

TM-28 Wong, R.
Construction Heuristics for Geometry and a Vector Algebra
Representation of Geometry, June 1972, AD 743-487

TM-29 Hossley, R. and Rackoff, C.
The Emptiness Problem for Automata on Infinite Trees, Spring
1972, AD 747-250

TM-30 McCray, W.A.
SIM360: A S/360 Simulator, October 1972, AD 749-365

TM-31 Bonneau, R.J.
A Class of Finite Computation Structures Supporting the Fast
Fourier Transform, March 1973, AD 757-787

290

PUBLICATIONS

TM-32 Moll, R.
An Operator Embedding Theorem for Complexity Classes of
Recursive Functions, May 1973, AD 759-999

TM-33 Ferrante, J. and Rackoff, C.
A Decision Procedure for the First Order Theory of Real Addition
with Order, May 1973, AD 760-000

TM-34 Bonneau, R.J.
Polynomial Exponentiation: The Fast Fourier Transform
Revisited, June 1973, PB 221-742

TM-35 Bonneau, R.J.
An Interactive Implementation of the Todd-Coxeter Algorithm,
December 1973, AD 770-565

TM-36 Geiger, S.P.
A User's Guide to the Macro Control Language, December 1973,
AD 771-435

TM-37 Schonhage, A.
Real-Time Simulation of Multidimensional Turing Machines by
Storage Modification Machines, December 1973, PB 226-103/AS

TM-38 Meyer, A.R.
Weak Monadic Second Order Theory of Successor is not
Elementary-Recursive, December 1973, PB 226-514/AS

TM-39 Meyer, A.R.
Discrete Computation: Theory and Open Problems, January
1974, PB 226-836/AS

TM-40 Paterson, M.S., Fischer, M.J. and Meyer, A.R.
An Improved Overlap Argument for On-Line Multiplication,
January 1974, AD 773-137

TM-41 Fischer, M.J. and Paterson, M.S.
String-Matching and Other Products, January 1974, AD 773-138

TM-42 Rackoff, C.
On the Complexity of the Theories of Weak Direct Products,
January 1974, PB 228-459/AS

291

PUBLICATIONS

TM-43 Fischer, M.J. and Rabin, M.O.
Super-Exponential Complexity of Presburger Arithmetic,
February 1974, AD 775-004

TM-44 Pless, V.
Symmetry Codes and their Invariant Subcodes, May 1974, AD
780-243

TM-45 Fischer, M.J. and Stockmeyer, L.J.
Fast On-Line Integer Multiplication, May 1974, AD 779-889

TM-46 Kedem, Z.M.
Combining Dimensionality and Rate of Growth Arguments for
Establishing Lower Bounds on the Number of Multiplications,
June 1974, PB 232-969/AS

TM-47 Pless, V.
Mathematical Foundations of Flip-Flops, June 1974, AD 780-901

TM-48 Kedem, Z.M.
The Reduction Method for Establishing Lower Bounds on the
Number of Additions, June 1974, PB 233-538/AS

TM-49 Pless, V.
Complete Classification of (24,12) and (22,11) Self-Dual Codes,
June 1974, AD 781-335

TM-50 Benedict, G.G.
An Enciphering Module for Multics, S.B. Thesis, EE Dept., July
1974, AD 782-658

TM-51 Aiello, J.M.
An Investigation of Current Language Support for the Data
Requirements of Structured Programming, S.M. & E.E. Thesis,
EE Dept., September 1974, PB 236-815/AS

TM-52 Lind, J.C.
Computing in Logarithmic Space, September 1974, PB
236-167/AS

TM-53 Bengelloun, S.A.
MDC-Programmer: A Muddle-to Datalanguage Translator for
Information Retrieval, S.B. Thesis, EE Dept., October 1974, AD
786-754

292

PUBLICATIONS

TM-54 Meyer, A.R.
The Inherent Computation Complexity of Theories of Ordered
Sets: A Brief Survey, October 1974, PB 237-200/AS

TM-55 Hsieh, W.N., Harper, L.H. and Savage, J.E.
A Class of Boolean Functions with Linear Combinatorial
Complexity, October 1974, PB 237-206/AS

TM-56 Gorry, G.A.
Research on Expert Systems, December 1974

TM-57 Levin, M.
On Bateson's Logical Levels of Learning, February 1975

TM-58 Qualitz, J.E.
Decidability of Equivalence for a Class of Data Flow Schemas,
March 1975, PB 237-033/AS

TM-59 Hack, M.
Decision Problems for Petri Nets and Vector Addition Systems,
March 1975 PB 231-916/AS

TM-60 Weiss, R.B.
CAMAC: Group Manipulation System, March 1975, PB
240-495/AS

TM-61 Dennis, J.B.
First Version of a Data Flow Procedure Language, May 1975

TM-62 Patil, S.S.
An Asynchronous Logic Array, May 1975

TM-63 Pless, V.
Encryption Schemes for Computer Confidentiality, May 1975, AD
A010-217

TM-64 Weiss, R.B.
Finding Isomorph Classes for Combinatorial Structures, S.M.
Thesis, EE Dept., June 1975

TM-65 Fischer, M.J.
The Complexity Negation-Limited Networks - A Brief Survey,
June 1975

293

PUBLICATIONS

TM-66 Leung, C.
Formal Properties of Well-Formed Data Flow Schemas, S.B., S.M.
& E.E. Thesis, EE Dept., June 1975

TM-67 Cardoza, E.E.
Computational Comolexity of the Word Problem for Commutative
Semigroups, S.M. Thesis, EE & CS Dept., October 1975

TM-68 Weng, K-S.
Stream-Oriented Computation in Recursive Data Flow Schemas,
S.M. Thesis, EE & CS Dept., October 1975

TM-69 Bayer, P.J.
Improved Bounds on the Costs of Optimal and Balanced Binary
Search Trees, S.M. Thesis, EE & CS Dept., November 1975

TM-70 Ruth, G.R.
Automatic Design of Data Processing Systems, February 1976,
AD A023-451

TM-71 Rivest, R.
On the Worst-Case of Behavior of String-Searching Algorithms,
April 1976

TM-72 Ruth, G.R.
Protosystem I: An Automatic Programming System Prototype,
July 1976, AD A026-912

TM-73 Rivest, R.
Optimal Arrangement of Keys in a Hash Table, July 1976

TM.74 Malvania, N.
The Design of a Modular Laboratory for Control Robotics, S.M.
Thesis, EE & CS Dept., September 1976, AD A030-418

TM-75 Yao, A.C. and Rivest, R.I.
K + 1 Heads are Better than K, September 1976, AD A030-008

TM-76 Bloniarz, P.A., Fischer, M.J. and Meyer, A.R.
A Note on the Average Time to Compute Transitive Closures,
September 1976

294

PUBLICATIONS

TM-77 Mok, A.K.
Task Scheduling in the Control Robotics Environment, S.M.
Thesis, EE & CS Dept., September 1976, AD A030-402

TM-78 Benjamin, A.J.
Improving Information Storage Reliability Using a Data Network,
S.M. Thesis, EE & CS Dept., October 1976, AD A033-394

TM-79 Brown, G.P.
A System to Process Dialogue: A Progress Report, October
1976, AD A033-276

TM-80 Even, S.
The Max Flow Algorithm of Dinic and Karzanov: An Exposition,
December 1976

TM-81 Gifford, D.K.
Hardware Estimation of a Process' Primary Memory
Requirements, S.B. Thesis, EE & CS Dept., January 1977

TM-82 Rivest, R.L., Shamir, A. and Adleman, L.
A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems, April 1977, AD A039-036

TM-83 Baratz, A.E.
Construction and Analysis of Network Flow Problem which
Forces Karzanov Algorithm to O(n3) Running Time, April 1977

TM-84 Rivest, R.L. and Pratt, V.R.
The Mutual Exclusion Problem for Unreliable Processes, April
1977

TM-85 Shamir, A.
Finding Minimum Cutsets in Reducible Graphs, June 1977, AD
A040-698

TM-86 Szolovits, P., Hawkinson, L.B. and Martin, W.A.
An Overview of OWL, A Language for Knowledge
Representation, June 1977, AD A041-372

TM-87 Clark, D., editor
Ancillary Reports: Kernel Design Project, June 1977

295

PUBLICATIONS

TM-88 Lloyd, E.L.
On Triangulations of a Set of Points in the Plane, S.M. Thesis, EE
& CS Dept., July 1977

TM-89 Rodriguez, H. Jr.
Measuring User Characteristics on the Multics System, S.B.
Thesis, EE & CS Dept., August 1977

TM-90 d'Oliveira, C.R.
An Analysis of Computer Decentralization, S.B. Thebis, EE & CS
Dept., October 1977, AD A045-526

TM-91 Shamir, A.
Factoring Numbers in O(log n) Arithmetic Steps, November
1977, AD A047-709

TM-92 Misunas, D.P.
Report on the Workshop on Data Flow Computer and Program
Organization, November 1977

TM-93 Amikura, K.
A Logic Design for the Cell Block of a Data-Flow Processor, S.M.
Thesis, EE & CS Dept., December 1977

TM-94 Berez, J.M.
A Dynamic Debugging System for MDL, S.B. Thesis, EE & CS
Dept., January 1978, AD A050-191

TM-95 Harel, D.
Characterizing Second Order Logic with First Order Quantifiers,
February 1978

TM-96 Harel, D., Amir P. and Stavi, J.
A Complete Axiomatic System for Proving Deductions about
Recursive Programs, February 1978

TM-97 Harel, D., Meyer, A.R. and Pratt, V.R.
Computability and Completeness in Logics of Programs,
February 1978

296

PUBLICATIONS

TM 98 Harel, D. and Pratt, V.R.
Nondeterminism in Logics of Programs, February 1978

TM 99 LaPaugh, A.S.
The Subgraph Homeomorphism Problem, S.M. Thesis, EE & CS
Dept., February 1978

TM 100 Misunas, D.P.
A Computer Architecture for Data-Flow Computation, S.M.
Thesis. EE & CS Dept., March 1978, AD A052-538

TM-101 Martin, W.A.
Descriptions and the Specialization of Concepts, March 1978,
AD A052-773

TM- 102 Abelson, H.
Lower Bounds on Information Transfer in Distributed
Computations, April 1978

TM-103 Harel, D.
Arithmetical Completeness in Logics of Programs, April 1978

TM-104 Jaffe, J.
The Use of Queues in the Parallel Data Flow Evaluation of "If-
Then-While" Programs, May 1978

TM- 105 Masek, W.J. and Paterson, M.S.
A Faster Algorithm Computing String Edit Distances, May 1978

TM-106 Parikh, R.
A Completeness Result for a Propositional Dynamic Logic, July
1978

TM-107 Shamir, A.
A Fast Signature Scheme, July 1978, AD A057-152

TM-108 Baratz, A.E.
An Analysis of the Solovay and Strassen Test for Primality, July
1978

TM-!09 Parikh, R.
Effectiveness, July 1978

297

PUBLICATIONS

TM-110 Jaffe, J.M.
An Analysis of Preemptive Multiprocessor Job Scheduling,
September 1978

TM-111 Jaffe, J.M.
Bounds on the Scheduling of Typed Task Systems, September
1978

TM-1 12 Parikh, R.
A Decidability Result for a Second Order Process Logic,
September 1978

TM-113 Pratt, V.R.
A Near-optimal Method for Reasoning about Action, September
1978

TM-114 Dennis, J.B., Fuller, S.H., Ackerman, W.B., Swan, R.J. and and
Weng, K-S.
Research Directions in Comoitter Architecture, September 1978,
AD A061-222

TM-115 Bryant, R.E. and Dennis, J.B.
Concurrent Programming, October 1978, AD A061-180

TM-116 Pratt, V.R.
Applications of Modal Logic to Programming, December 1978

TM-117 Pratt, V.R.
Six Lectures on Dynamic Logic, December 1978

TM-118 Borkin, S.A.
Data Model Equivalence, December 1978, AD A062-753

TM- 19 Shamir, A. and Zippel, R.E.
On the Security of the Merkle-Hellman Cryptographic Scheme,
December 1978, AD A063-104

TM-120 Brock, J.D.
Operational Semantics of a Data Flow Language, S.M. Thesis, EE
& CS Dept., December 1978, AD A062-997

298

PUBLICATIONS

TM-121 Jaffe, J.
The Equivalence of R.E. Programs and Data Flow Schemes,
January 1979

TM-122 Jaffe, J.
Efficient Scheduling of Tasks Without Full Use of Processor
Resources, January 1979

TM-123 Perry, H.M.
An Improved Proof of the Rabin-Hartmanis-Stearns Conjecture,
S.M. & E.E. Thesis, EE & CS Dept., January 1979

TM-124 Toffoli, T.
Bicontinuous Extensions of Invertible Combinatorial Functions,
January 1979, AD A063-886

TM-125 Shamir, A., Rivest, R.L. and Adleman, L.M.
Mental Poker, February 1979, AD A066-331

TM-126 Meyer, A.R. and Paterson, M.S.
With What Frequency Are Apparently Intractable Problems
Difficult?, February 1979

TM-127 Strazdas, R.J.
A Network Traffic Generator for Decnet, S.B. & S.M. Thesis, EE &
CS Dept., March 1979

TM-128 Loui, M.C.
Minimum Register Allocation is Complete in Polynomial Space,
March 1979

TM-129 Shamir, A.
On the Cryptocomplexity of Knapsack Systems, April 1979, AD
A067-972

TM-130 Greif, I. and Meyer, A.R.
Specifying the Semantics of While-Programs: A Tutorial and
Critique of a Paper by Hoare and Lauer, April 1979, AD A068-967

TM-131 Adleman, L.M.
Time, Space and Randomness, April 1979

TM-132 Patil, R.S.
Design of a Program for Expert Diagnosis of Acid Base and
Electrolyte Disturbances, May 1979

299

PUBLICATIONS

TM-133 Loui, M.C.
The Space Complexity of Two Pebble Games on Trees, May 1979

TM-134 Shamir, A.
How to Share a Secret, May 1979, AD A069-397

TM-135 Wyleczuk, R.H.
Timestamps and Capability-Based Protection in a Distributed
Computer Facility, S.B. & S.M. Thesis, EE & CS Dept., June 1979

TM-136 Misunas, D.P.
Report on the Second Workshop on Data Flow Computer and
Program Organization, June 1979

TM-137 Davis, E. and Jaffe, J.M.
Algorithms for Scheduling Tasks on Unrelated Processors, June
1979

TM-138 Pratt, V.R.
Dynamic Algebras: Examples, Constructions, Applications, July
1979

TM-139 Martin, W.A.
Roles, Co-Descriptors, and the Formal Representation of
Quantified English Expressions (Revised May 1980), September
1979, AD A074-625

TM-140 Szolovits, P.
Artificial Intelligence and Clinical Problem Solving, September
1979

TM.141 Hammer, M. and McLeod, D.
On Database Management System Architecture, October 1979,
AD A076-417

TM.142 Lipski, W., Jr.
On Data Bases with Incomplete Information, October 1979

TM.143 Leth, J.W.
An Intermediate Form for Data Flow Programs, S.M. Thesis, EE &
CS Dept., November 1979

TM-144 Takagi, A.
Concurrent and Reliable Updates of Distributed Databases,
November 1979

300

PUBLIC A TIONS

TM-145
Loui, M.C.

A Space Bound for One-Tape Multidimensional Turing Machines,
November 1979

TM-146 Aoki, D.J.
A Machine Language Instruction Set for a Data Flow Processor,
S.M. Thesis, EE & CS Dept., December 1979

TM-147 Schroeppel, R. and Shamir, A.
A T = 0 (2 n/2), S = 0(2 n/4) Algorithm for Certain NP-Complete
Problems, January 1980, AD A080-385

TM-148 Adleman, L.M. and Loui, M.C.
Space-Bounded Simulation of Multitape Turing Machines,
January 1980

TM-149 Pallottino, S. and Toffoli, T.
An Efficient Algorithm for Determining the Length of the Longest
Dead Path in an "Lifo" Branch-and-Bound Exploration Schema,
January 1980, AD A079-912

TM- 150 Meyer. A.R.
Ten Thousand and One Logics of Programming, February 1980

TM- 151 Toffoli, T.
Reversible Computing, February 1980, AD A082-021

TM-152 Papadimitriou, C.H.
On the Complexity of Integer Programming, February 1980

TM- 153 Papadimitriou, C.H.
Worst-Case and Orobabilistic Analysis of a Geometric Location
Problem, February 1980

TM-154 Karp, R.M. and Papadimitriou, C.H.
On Linear Characterizations of Combinatorial Optimization
Problems, February 1980

TM-155 Atai, A., Lipton, R.J., Papadimitriou. C.H. and Rodeh, M.
Covering Graphs by Simple Circuits, February 1980

TM-156 Meyer, A.R. and Parikh, R.
Definability in Dynamic Logic, February 1980

301

PUBLICATIONS

TR-58 Greenbaum, Howard J.
A Simulator of Multiple Interactive Users to Drive a Time-Shared
Computer System, S.M. Thesis, EE Dept., January 1969, AD
686-988

TR-59 Guzman, Adolfo
Computer Recognition of Three- Dimensional Objects in a Visual
Scene, Ph.D. Dissertation, EE Dept., December 1968, AD
692-200

TR-60 Ledgard. Henry F.
A Formal System for Defining the Syntax and Semantics of
Computer Languages, Ph.D. Dissertation, EE Dept., April 1969,
AD 689-305

TR-61 Baecker, Ronald M.
Interactive Computer-Mediated Animation, Ph.D. Dissertation, EE
Dept., June 1969, AD 690-887

TR-62 Tillman, Coyt C., Jr.
EPS: An Interactive System for Solving Elliptic Boundary-Value
Problems with Facilities for Data Manipulation and General-
Purpose Computation, June 1969, AD 692-462

TR-63 Brackett, John W., Michael Hammer and Daniel E. Thornhill
Case Study in Interactive Graphics Programming: A Circuit
Drawing and Editing Program for Use with a Storage-Tube
Display Terminal, October 1969, AD 699-930

TR-64 Rodriguez, Jorge E.
A Graph Model for Parallel Computations, Sc.D. Thesis, EE
Dept., September 1969, AD 697-759

TR-65 DeRemer, Franklin L.
Practical Translators for LR(k) Languages, Ph.D. Dissertation, EE
Dept., October 1969, AD 699-501

TR-66 Beyer, Wendell T.
Recognition of Topological Invariants by Iterative Arrays, Ph.D.
Dissertation, Math. Dept., October 1969, AD 699.502

315

PUBLICATIONS

Incremental Simulation on a Time-Shared Computer, Ph.D.
Dissertation, Sloan School, January 1968, AD 662-225

TR-49 Luconi, Fred L.
Asynchronous Computational Structures, Ph.D. Dissertation, EE
Dept., February 1968, AD 667.602

TR-50 Denning, Peter J.
Resource Allocation in Multiprocess Computer Systems, Ph.D.
Dissertation, EE Dept., May 1968, AD 675-554

TR-51 Charniak, Eugene
CARPS, A Program which Solves Calculus Word Problems, S.M.
Thesis. EE Dept., July 1968, AD 673-670

TR-52 Deitel, Harvey M.
Absentee Computations in a Multiple-Access Computer System,
S.M. Thesis, EE Dept., August 1968, AD 684-738

TR-53 Slutz, Donald R.
The Flow Graph Schemata Modei of Paralel Computation, Ph.D.
Dissertation, EE Dept., September 1968, AD 683-393

TR-54 Grochow, Jerrold M.
The Graphic Display as an Aid in the Monitoring of a Time-
Shared Computer System, S.M, Thesis, EE Dept., October 1968,
AD 689-468

TR-55 Rappaport, Robert L.
Implementing Multi-Process Primitives in a Multiplexed Computer
System, S.M. Thesis, EE Dept., November 1968, AD 689-469

TR-56 Thornhill, Daniel E., Robert H. Stotz, Douglas T. Ross and John
E. Ward
An Integrated Hardware-Software System for Computer Graphics
in Time-Sharing, December 1968, AD 685-202

TR-57 Morris, James H.
Lambda-Calculus Models of Programming Languages, Ph.D.
Dissertation, Sloan School, December 1968, AD 683-394

314

PUBLICATIONS

Some Aspects of Pattern Recognition by Computer, S.M. Thesis,
EE Dept., February 1967, AD 656-041

TR.38 Rosenberg, Ronald C., Daniel W. Kennedy and Roger
A. Humphrey
A Low-Cost Output Terminal For Time-Shared Computers, March
1967, AD 662-027

TR-39 Forte, Allen
Syntax-Based Analytic Reading of Musical Scores, April 1967,
AD 661-806

TR-40 Miller, James R.
On-Line Analysis for Social Scientists, May 1967, AD 668-009

TR-41 Coons, Steven A.
Surfaces for Computer-Aided Design of Space Forms, June
1967, AD 663-504

TR-42 Liu, Chung L., Gabriel D. Chang and Richard E. Marks
Design and Implementation of a Table-Driven Compiler System,
July 1967, AD 668-960

TR-43 Wilde, Daniel U.
Program Analysis by Digital Computer, Ph.D. Dissertation, EE
Dept., August 1967, AD 662-224

TR-44 Gorry, G. Anthony
A System for Computer-Aided Diagnosis, Ph.D. Dissertation,
Sloan School, September 1967, AD 662-665

TR-45 LeaI-Cantu, Nestor
On the Simulation of Dynamic Systems with Lumped Parameters
and Time Delays, S.M. Thesis, ME Dept., October 1967, AD
663-502

TR-46 Alsop, Joseph W.
A Canonic Translator, S.B. Thesis, EE Dept., November 1967, AD
663-503

TR-47 Moses. Joel
Symbolic Integration, Ph.D. Dissertation, Math. Dept., December
1967, AD 662-666

TR-48 Jones, Malcolm M.

313

PUBLICATIONS

TR-26 Cheek, Thomas Burrell
Design of a Low-Cost Character Generator for Remote Computer
Displays, S.M. Thesis, EE Dept., March 1966, AD 631-269

TR-27 Edwards, Daniel James
OCAS -On-Line Cryptanalytic Aid System, S.M. Thesis, EE Dept.,
May 1966, AD 633-678

TR-28 Smith, Arthur Anshel
Input/Output in Time-Shared, Segmented, Multiprocessor
Systems, S.M. Thesis, EE Dept., June 1966, AD 637-215

TR-29 Ivie, Evan Leon
Search Procedures Based on Measures of Relatedness between
Documents, Ph.D. Dissertation, EE Dept., June 1966, AD 636-275

TR-30 Saltzer, Jerome Howard TRaffic Control in a Multiplexed
Computer System, Sc.D. Thesis, EE Dept., July 1966, AD 635-966

TR-31 Smith, Donald L.
Models and Data Structures for Digital Logic Simulation, S.M.
Thesis, EE Dept., August 1966, AD 637-192

TR-32 Teitelman, Warren
PILOT: A Step Toward Man-Computer Symbiosis, Ph.D.
Dissertation, Math. Dept., September 1966, AD 638-446

TR-33 Norton, Lewis M, ADEPT - A Heuristic Program for Proving
Theorems of Group Theory, Ph.D. Dissertation, Math. Dept.,
October 1966, AD 645-660

TR-34 Van Horn, Earl C., Jr.
Computer Design for Asynchronously Reproducible
Multiprocessing, Ph.D. Dissertation, EE Dept., November 1966,
AD 650-407

TR-35 Fenichel, Robert R.
An On-Line System for Algebraic Manipulation, Ph.D.
Dissertation, Appl. Math. (Harvard), December 1966, AD 657-282

TR-36 Martin, William A.
Symbolic Mathematical Laboratory, Ph.D. Dissertation, EE Dept.,
January 1967, AD 657-283

TR-37 Guzman-Arenas, Adolfo

312

PUBLICATIONS

TR-14 Roos, Daniel
Use of CTSS in a Teaching Environment, November 1964, AD
661-807

TR-16 Saltzer, Jerome H.
CTSS Technical Notes, March 1965, AD 612-702

TR-17 Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer, March 1965, AD
462-158

TR-18 Scherr, Allan Lee
An Analysis of Time-Shared Computer Systems, Ph.D.
Dissertation, EE Dept., June 1965, AD 470-715

TR-19 Russo, Francis John
A Heuristic Approach to Alternate Routing in a Job Shop, S.B. &
S.M. Thesis, Sloan School, June 1965, AD 474-018

TR-20 Wantman, Mayer Elihu
CALCULAID: An On-Line System for Algebraic Computation and
Analysis, S.M. Thesis, Sloan School, September 1965, AD
474-019

TR-21 Denning, Peter James
Queueing Models for File Memory Operation, S.M. Thesis, EE
Dept., October 1965, AD 624-943

TR-22 Greenberger, Martin
The Priority Problem, November 1965, AD 625-728

TR-23 Dennis, Jack B. and Earl C. Van Horn
Programming Semantics for Multi-programmed Computations,
December 1965, AD 627-537

TR-24 Kaplow, Roy, Stephen Strong and John Brackett
MAP: A System for On-Line Mathematical Analysis, January
1966, AD 476-443

TR-25 Stratton, William David
Investigation of an Analog Technique to Decrease Pen-Tracking
Time in Computer Displays, S.M. Thesis, EE Dept., March 1966,
AD-631-396

311

PUBLICATIONS

Technical Reports

TR-1 5 Bobrow, Daniel G.
Natural Language Input for a Computer Problem Solving System,
Ph.D. Dissertation, Math. Dept., September 1964, AD 604-730

TR-2 Raphael, Bertram
SIR: A Computer Program for Semantic Information Retrieval,
Ph.D. Dissertation, Math. Dept., June 1964, AD 608-499

TR-3 Corbato, Fernando J.
System Requirements for Multiple-Access, Time-Shared
Computers, May 1964, AD 608.501

TR.4 Ross, Douglas T. and Clarence G. Feldman
Verbal and Graphical Language for the AED System: A Progress
Report, May 1964, AD 604-678

TR-6 Biggs, John M. and Robert D. Logcher
STRESS: A Problem-Oriented Language for Structural
Engineering, May 1964, AD 604-679

TR.7 Weizenbaum, Joseph
OPL-1: An Open Ended Programming System within CTSS, April
1964, AG 604-680

TR-8 Greenberger, Martin
The OPS-1 Manual, May 1964, AD 604-681

TR-11 Dennis, Jack B.
Program Structure in a Multi-Access Computer, May 1964, AD
608-500

TR-12 Fano, Robert M.
The MAC System: A Progress Report, October 1964, AD 609-296

TR-13 Greenberger, Martin
A New Methodology for Computer Simulation, October 1964, AD
609-288

5TRs 5, 9, 10, 15 were never issued

310

=u -, , = w lmml Ul UI == mllIml Il

PUBLICATIONS

TM-253 Chor, B., Leiserson, C., Rivest, R. and Shearer, J. An Application
of Number Theory to the Organization of Raster Graphics
Memory, April 1984

TM-254 Feldmeier, D.C. Empirical Analysis of a Token Ring Network,
April 1984

TM-255 Bhatt, S. and Leiserson, C. How to Assemble Tree Machines,
April 1984

TM-256 Goldreich, 0. On the Number of Close-and Equal Pairs of Bits in
a String (With Implications on the Security of RSA's L.S.B., April
1984

TM-257 Dwork, C., Kanellakis, P. and Mitchell, J. On the Sequential
Nature of Unification, April 1984

TM-258 Halpern, M., Meyer A. and Trakhtenbrot. B. The Semantics of
Local Storage, or What Makes the Free-list Free?, April 1984

TM-259 Lynch, N. and Fredrickson, G. The Impact of Synchronol"s
Communication on the Problem of Electing a Le,-r i" a Ring,
April 1984

TM-260 Chor, B. and Goldreich, 0. RSA/Rabin Least Significant Bits are
1/2 + poly(logn) Secure, May 1984

TM-261 Zaks, S. Optimal Distributed Algorithms for Sorting and Ranking,
May 1984

TM-262 Leighton, T. and Rosenberg, A. Three dimensional Circuit
Layouts, June 1984

309

PUBLICATIONS

TM-238 Baker, B.S., Bhatt, S.N. and Leighton, F.T. An Approximation
Algorithm for Manhattan Routing, February 1983

TM-239 Sutherland, J.B. and Sirbu, M. Evaluation of an Office Analysis
Methodology, March 1983

TM-240 Bromley, H. A Program for Therapy of Acid-Base and Electrolyte
Disorders, S.B. Thesis, Electrical Engineering Dept., June 1983

TM-241 Arvind and lannucci, R.A. Two Fundamental Issues in
Multiprocessing: The Dataflow Solution, September 1983

TM-242 Pingali, K. and Arvind. Efficient Demand-driven Evaluation (I),
September 1983

TM-243 Pingali, K. and Arvind. Efficient Demand-driven Evaluation (11),
September 1983

TM-244 Goldreich, 0., Goldwasser, S. and Micali, S. How to Construct
Random Functions, November 1983

TM-245 Meyer, A. Understanding Algol: The View of the Recent Convert
to Denotational Semantics, October 1983

TM-246 Trakhtenbrot, B.A., Halpern, J.Y. and Meyer, A.R. From
Denotational to Operational and Axiomatic Semantics for Algol-
Like Languages: An Overview, October 1983

TM-247 Leighton, T. and Lepley, M. Probabilistic Searching in Sorted
Linked Lists, November 1983

TM-248 Leighton, F.T. and Rivest, R.L. Estimating a Probability Using
Finite Memory, November 1983

TM-249 Leighton, F.T. and Rivest, R.L. The Markov Chain Tree Theorem,
December 1983

TM-250 Goldreich, 0. On Concurrent Identification Protocols, December
1983

TM-251 Dolev, D., Lynch, N., Pinter, S. Stark, E. and Weihl, W. Reaching
Approximate Agreement in the Presence of Faults, December
1983

TM.252 Zachos, S. and Heller, H. On BPP, December 1983

308

PUBLICATIONS

TM-223 diSessa, A.A. A Principled Design for an Integrated Computation
Environment, July 1982

TM-224 Barber, G. Supporting Organizational Problem Solving with a
Workstation, July 1982

TM-225 Barber, G. and Hewitt, C. Foundations for Office Semantics, July
1982

TM-226 Bergstra, J., Chmielinska, A. and Tiuryn, J. Hoares's Logic Not
Complete When it Could Be, August 1982

TM-227 Leighton, F.T. New Lower Bound Techniques for VLSI, August
1982

TM-228 Papadimitriou, C. and Zachos, S. Two Remarks on the Power of
Counting, August 1982

TM-229 Cosmadakis, S. The Complexity of Evaluation Relational Queries,
August 1982

TM-230 Shamir, A. Embedding Cryptographic Trapdoors in Arbitrary
Knapsack Systems, September 1982

TM-231 Kleitman, D., Leighton, F.T., Lepley, M. and Miller G. An
Asymptotically Optimal Layout for the shuffle-exchange Graph,
October 1982

TM-232 Yeh, A. PLY: A System of Plausibility Inference with a
Probabilistic Basis, December 1982

TM-233 Konopelski, L. Implementing Internet Remote Login on a
Personal Computer, S.B. Thesis, Electrical Engineering Dept.,
December 1982

TM-234 Rivest, R. and Sherman, A. Randomized Encryption Techniques,
January 1983.

TM-235 Mitchell, J. The Implication of Problem for Functional and
Inclusion Dependencies, February 1983

TM-236 Leighton, F.T. and Leiserson, C.E. Wafter-Scale Integration of
Systolic Arrays, February 1983

TM.237 Dolev, D., Leighton, F.T. and Trickey, H. Planar Embedding of
Planar Graphs, February 1983

307

PUBLICATIONS

TM-207 Longo. G. Power Set Models For Lambda-Calculus: Theories,
Expansions. Isomorphisms, November 1981

TM-208 Cosmadakis, S and Papadimitriou, C. The Traveling Salesman
Problem with Many Visits to Few Cities, November 1981

TM-209 Johnson, D. and Papadimitriou, C. Computational Complexity
and the Traveling Salesman Problem, December 1981

TM-210 Greif, I. Software for the 'Roiels" People Play, February 1982

TM-211 Meyer, A. and Tiuryn, J. A Note on Equivalences Among Logics
of Programs, December 1981

TM-212 Elias, P. Minimax Optimal Universal Codeword Sets, January
1982

TM-213 Greif, I PCAL: A Personal Calendar, January 1982

TM-214 Meyer, A. and Mitchell, J. Terminations for Recursive Programs:
Completeness and Axiomatic Definability, March 1982

TM-215 Leiserson, C. and Saxe J. Optimizing Synchronous Systems,
March 1982

TM-216 Church, K. and Patil, R. Coping with Syntactic Ambiguity or How
to Put the Block in the Box on the Table, April 1982.

TM-217 Wright, D. A File Transfer Program for a Personal Computer,
April 1982

TM-218 Greif, I. Cooperative Office Work, Teleconferencing and
Calendar Manaqement: A Collection of Papers, May 1982

TM-219 Jouannaud, J. P., Lescanne, P and Reinig, F. Recursive
Decompositibn Ordering and Multiset Orderings, June 1982

TM-220 Chu, T.-A. Circuit Analysis of Self-Times Elements for NMOS
VLSI Systems, May 1982

TM.221 Leighton, F., Lepley, M. and Miller, G. Layouts for the Shuffle-
Exchange Graph Based on the Complex Plane Diagram, June
1982

TM-222 Meier zu Sieker, F. A Telex Gateway for the Internety, S.B.
Thesis, Electrical Engineering Dept., May 1982

306

PUBLICATIONS

TM.194 Barendregt, Henk and Giuseppe Longo
Recursion Theoretic Operators and Morphisms on Numbered
Sots, February 1981

TM-195 Barber, Gerald R.
Record of the Workshop on Research in Office Semantics,
February 1981

TM-196 Bhatt, Sandeep N.
On Concentration and Connection Networks, S.M. Thesis, EE &

CS Dept., March 1981

TM-197 Fredkin, Edward and Toffoli Thomaso
Conservative Logic, May 1981

TM-198 Halpern, Joseph and Reif, J.
The Propositional Dynamic Logic of Deterministic Well-
Structured Programs, March 1981

TM-199 Mayr, E. and Meyer, A.
The Complexity of the Word Problems for Communative
Semigroups and Polynomial Ideals, June 1981

TM-200 Burke, G.
LSB Manual, June 1981

TM-201 Meyer, A.
What is a Model of the lambda Calculus? Expanded Version, July
1981.

TM-202 Saltzer, J. H. Communication Ring Initialization without Central
Control December 1981

TM-203 Bawden, A., Burke, G. and Hoffman, C. Maclisp Extensions, July
1981

TM-204 Halpern, J.Y. On the Expressive Power of Dynamic Logic, II,
August 1981

TM-205 Kannon, R. Circuit-Size Lower Bounds and Non-Reducibility to
Sparce Sets, October 1981.

TM-206 Leiserson, C. and Pinter, R. Optimal Placement for River Routing,
October 1981

305

PUBLICATIONS

TM-182 Itai, Alon, Christos H. Papadimitriou and Jayme Luiz Szwarefiter
Hamilton Paths in Grid Graphs, October 1980

TM-183 Meyer, Albert R.
A Note on the Length of Craig's Interpolants, October 1980

TM-184 Lieberman, Henry and Carl Hewitt
A Real Time Garbage Collector that can Recover Temporary
Storage Quickly, October 1980

TM-185 Kung, Hsing-Tsung and Christos H. Papadimitriou
An Optimality Theory of Concurrency Control for Databases,
November 1980, AD A092-625

TM-186 Szolovits, Peter and William A. Martin
BRAND X Manual, November 1980, AD A093-041

TM-187 Fischer, Michael J., Albert R. Meyer and Michael S. Paterson
CapOmegaO(n log n) Lower Bounds on Length of Boolean
Formulas, November 1980

TM-188 Mayr, Ernst
An Effective Representation of the Reachability Set of Persistent
Petri Nets, January 1981

TM- 189 Mayr, Ernst
Persistence of Vector Replacement Systems is Decidable,
January 1981

TM-190 Ben-Ari, Mordechai, Joseph Y. Halpern and Amir Pnueli
Deterministic Propositional Dynamic Logic: Finite Models,
Complexity, and Completeness, January 1981.

TM-191 Parikh, Rohit
Propositional Dynamic Logics of Programs: A Survey, January
1981.

TM-192 Meyer, Albert R., Robert S. Streett and Grazina Mirkowska
The Deducibility Problem in Propositional Dynamic Logic,
February 1981

TM-193 Yannakakis, Mihalis and Christos H. Papadimitriou
Algebraic Dependencies, February 1981

304

PUBLICATIONS

TM-169 Burke, Glenn and David Moon
LOOP Iteration Macro, (revised January 1981) July 1980, AD
A087-372

TM-170 Ehrenfeucht, Andrzej, Rohit Parikh and Gregorz Rozenberg
Pumping Lemmas for Regular Sets, August 1980

TM-171 Meyer, Albert R.
What is a Model of the Lambda Calculus?, August 1980

TM-172 Paseman, William G.
Some New Methods of Music Synthesis, S.M. Thesis, EE & CS
Dept., August 1980, AD A090-130

TM-173 Hawkinson, Lowell B.
XLMS: A Linguistic Memory System, September 1980, AD
A090-033

TM-174 Arvind, Vinod Kathail and Keshav Pingall
A Dataf low Architecture with Tagged Tokens, September 1980

TM-175 Meyer, Albert R., Daniel Weise and Michael C. Loui
On Time Versus Space III, September 1980

TM-176 Seaquist, Carl R.
A Semantics of Synchronization, S.M. Thesis, EE & CS Dept.,
September 1980, AD A091-015

TM-177 Sinha, Mukul K.
TIMEPAD A Performance Improving Synchronization
Mechanism for Distributed Systems, September 1980

TM-178 Arvind and Robert E. Thomas
I-Structures: An Efficient Data Type for Functional Languages,
September 1980

TM-179 Halpern Joseph Y. and Albert R. Meyer
Axiomatic Definitions of Programming Languages, II, October
1980

TM-180 Papadimitriou, Christos H.
A Theorem in Database Concurrency Control, October 1980

TM-181 Lipski, Witold Jr. and Christos H. Papadimitriou
A Fast Algorithm for Testing for Safety and Detecting Deadlocks
in Locked Transaction Systems, October 1980

303

PUBLICATIONS

TM-157 Meyer, Albert R. and Karl Winklmann
On the Expressive Power of Dynamic Logic, February 1980

TM-158 Stark, Eugene W.
Semaphore Primitives and Starvation-Free Mutual Exclusion,
S.M. Thesis, EE & CS Dept., March 1980

TM.159 Pratt, Vaughan R.
Dynamic Algebras and the Nature of Induction, March 1980

TM-160 Kanellakis, Paris C.
On the Computational Complexity of Cardinality Constraints in
Relational Databases, March 1980

TM-161 Lloyd, Errol L.
Critical Path Scheduling of Task Systems with Resource and
Processor Constr aints, March 1980

TM-162 Marcum, Alan M.
A Manager for Named, Permanent Objects, S.B. & S.M. Thesis,
EE & CS Dept., April 1980, AD A083-491

TM-163 Meyer, Albert R. and Joseph Y. Halpern
Axiomatic Definitions of Programming Languages: A Theoretical
Assessment, April 1980

TM-164 Shamir, Adi
The Cryptographic Security of Compact Knapsacks (Preliminary
Report), April 1980, AD A084-456

TM-165 Finseth, Craig A.
Theory and Practice of Text Editors or A Cookbook for an
Emacs, S.B. Thesis, EE & CS Dept., May 1980

TM-166 Bryant, Randal E.
Report on the Workshop on Self-Timed Systems, May 1980

TM-167 Pavelle, Richard and Michael Wester
Computer Programs for Research in Gravitation and Differential
Geometry, June 1980

TM-168 Greif, Irene
Programs for Distributed Computing: The Calendar Application,
July 1980, AD A087-357

302

PUBLICATIONS

TR-67 Vanderbilt, Dean H.
Controlled Information Sharing in a Computer Utility, Ph.D.
Dissertation, EE Dept., October 1969, AD 699-503

TR-68 Selwyn, Lee L.
Economies of Scale in Computer Use: Initial Tests and
Implications for The Computer Utility, Ph.D. Dissertation, Sloan
School, June 1970, AD 710-011

TR-69 Gertz, Jeffrey L.
Hierarchical Associative Memories fo. Parallel Computation,
Ph.D. Dissertation, EE Dept., June 1970, AD 711-091

TR-70 Fillat, Andrew I. and Leslie A. Kraning
Generalized Organization of Large Data-Bases: A Set-Theoretic
Approach to Relations, S.B. & S.M. Thesis, EE Dept., June 1970,
AD 711-060

TR-71 Fiasconaro, James G.
A Computer-Controlled Graphical Display Processor, S.M.
Thesis, EE Dept., June 1970, AD 710-479

TR.72 Patil, Suhas S.
Coordination of Asynchronous Events, Sc.D. Thesis, EE Dept.,
June 1970, AD 711-763

TR-73 Griffith, Arnold K.
Computer Recognition of Prismatic Solids, Ph.D. Dissertation,
Math. Dept., August 1970, AD 712-069

TR-74 Edelberg, Murray
Integral Convex Polyhedra and an Approach to Integralization,
Ph.D. Dissertation, EE Dept., August 1970, AD 712-070

TP.75 Hebalkar, Prakash G.
Deadlock-Free Sharing of Resources in Asynchronous Systems,
Sc.D. Thesis, EE Dept., September 1970, AD 713-139

TR-76 Winston, Patrick H.
Learning Structural Descriptions from Examples, Ph.D.
Dissertation, EE Dept., September 1970, AD 713-988

TR.77 Haggerty, Joseph P.
Complexity Measures for Language Recognition by Canonic
Systems, S.M. Thesis, EE Dept., October 1970, AD 715-134

316

PUBLICATIONS

TR-78 Madnick, Stuart E.
Design Strategies for File Systems, S.M. Thesis, EE Dept. & Sloan
School, October 1970, AD 714-269

TR-79 Horn, Berthold K.
Shape from Shading: A Method for Obtaining the Shape of a
Smooth Opaque Object from One View, Ph.D. Dissertation, EE
Dept., November 1970, AD 717-336

TR-80 Clark, David D., Robert M. Graham, Jerome H. Saltzer and
Michael D. Schroeder
The Classroom Information and Computing Service, January
1971, AD 717-857

TR-81 Banks, Edwin R.
Information Processing and Transmission in Cellular Automata,
Ph.D. Dissertation, ME Dept., January 1971, AD 717-951

TR-82 Krakauer, Lawrence J.
Computer Analysis of Visual Properties of Curved Objects, Ph.D.
Dissertation, EE Dept., May 1971, AD 723-647

TR-83 Lewin, Donald E.
In-Process Manufacturing Qualit Control, Ph.D. Dissertation,
Sloan School, January 1971, AD 720-098

TR-84 Winograd, Terry
Procedures as a Representation for Data in a Computer Program
for Understanding Natural Language, Ph.D. Dissertation, Math.
Dept., February 1971, AD 721-399

TR-85 Miller, Perry L.
Automatic Creation of a Code Generator from a Machine
Description, E.E. Thesis, EE Dept., May 1971, AD 724-730

TR-86 Schell, Roger R.
Dynamic Reconfiguration in a Modular Computer System, Ph.D.
Dissertation, EE Dept., June 1971, AD 725-859

TR-87 Thomas, Robert H.
A Model for Process Representation and Synthesis, Ph.D.
Dissertation, EE Dept., June 1971, AD 726-049

317

PUBLICATIONS

TR-88 Welch, Terry A.
Bounds on Information Retrieval Efficiency in Static File
Structures, Ph.D. Dissertation, EE Dept., June 1971, AD 725-429

TR-89 Owens, Richard C., Jr.
Primary Access Control in Large-Scale Time-Shared Decision
Systems, S.M. Thesis, Sloan School, July 1971, AD 728-036

TR-90 Lester, Bruce P.
Cost Analysis of Debugging Systems, S.B. & S.M. Thesis, EE
Dept., September 1971, AD 730-521

TR-91 Smoliar, Stephen W.
A Parallel Processing Model of Musical Structures, Ph.D.
Dissertation, Math. Dept., September 1971, AD 731-690

TR-92 Wang, Paul S.
Evaluation of Definite Integrals by Symbolic Manipulation, Ph.D.
Dissertation, Math. Dept., October 1971, AD 732-005

TR-93 Greif, Irene Gloria
Induction in Proofs about Programs, S.M. Thesis, EE Dept.,
February 1972, AD 737-701

TR-94 Hack, Michel Henri Theodore
Analysis of Production Schemata by Petri Nets, S.M. Thesis, EE
Dept., February 1972, AD 740-320

TR-95 Fateman, Richard J.
Essays in Algebraic Simplification (A revision of a Harvard Ph.D.
Dissertation), April 1972, AD 740-132

TR-96 Manning, Frank
Autonomous, Synchronous Counters Constructed Only of J-K
Flip-Flops, S:M. Thesis, EE Dept., May 1972, AD 744-030

TR-97 Vilfan, Bostjan
The Complexity of Finite Functions, Ph.D. Dissertation, EE Dept.,
March 1972, AD 739-678

TR-98 Stockmeyer, Larry Joseph
Bounds on Polynomial Evaluation Algorithms, S.M. Thesis, EE
Dept., April 1972, AD 740-328

318

PUBLICATIONS

TR.99 Lynch, Nancy Ann
Relativization of the Theory of Computational Complexity, Ph.D.
Dissertation, Math. Dept., June 1972, AD 744-032

TR.100 Mandl, Robert
Further Results on Hierarchies of Canonic Systems, S.M. Thesis,
EE Dept., June 1972, AD 744-206

TR-101 Dennis, Jack B.
On the Design and Specification of a Common Base Language,
June 1972, AD 744-207

TR-102 Hossley, Robert F.
Finite Tree Automata and w-Automata, S.M. Thesis, EE Dept.,
September 1972, AD 749-367

TR-103 Sekino, Akira
Performance Evaluation of Multiprogrammed Time-Shared
Computer Systems, Ph.D. Dissertation, EE Dept., September
1972, AD 749-949

TR-104 Schroeder, Michael D.
Cooperation of Mutually Suspicious Subsystems in a Computer
Utility, Ph.D. Dissertation, EE Dept., September 1972, AD 750-173

TR- 105 Smith, Burton J.
An Analysis of Sorting Networks, Sc.D. Thesis, EE Dept., October
1972, AD 751-614

TR- 106 Rackoff, Charles W.
The Emptiness and Complementation Problems for Automata on
Infinite Trees, S.M. Thesis, EE Dept., January 1973, AD 756<-248

TR-107 Madnick, Stuart E.
Storage Hierarchy Systems, Ph.D. Dissertation, EE Dept., April
1973, AD 760-001

TR-108 Wand, Mitchell
Mathematical Foundations of Formal Language Theory, Ph.D.
Dissertation, Math. Dept., December 1973.

TR-109 Johnson, David S.
Near-Optimal Bin Packing Algorithms, Ph.D. Dissertation, Math.
Dept., June 1973, PB 222-090

319

-I

PUBLICATIONS

TR-110 Moll, Robert
Complexity Classes of Recursive Functions, Ph.D. Dissertation,
Math. Dept., June 1973, AD 767-730

TR.111 Linderman, John P.
Productivity in Parallel Computation Schemata, Ph.D.
Dissertation, EE Dept., December 1973, PB 226.159/AS

TR.1 12 Hawryszkiewycz, Igor T.
Semantics of Data Base Systems, Ph.D. Dissertation, EE Dept.,
December 1973, PB 226-061/AS

TR.113 Herrmann, Paul P.
On Reducibility Among Combinatorial Problems, S.M. Thesis,
Math. Dept., December 1973, PB 226-157/AS

TR-114 Metcalfe, Robert M.
Packet Communication, Ph.D. Dissertation, Applied Math.,
Harvard University, December 1973, AD 771-430

TR-115 Rotenberg, Leo
Making Computers Keep Secrets, Ph.D. Dissertation, EE Dept.,
February 1974, PB 229-352/AS

TR.116 Stern, Jerry A.
Backup and Recovery of On-Line Information in a Computer
Utility, S.M. & E.E. Thesis, EE Dept., January 1974, AD 774-141

TR-117 Clark, David D.
An Input/Output Architecture for Virtual Memory Computer
Systems, Ph.D. Dissertation, EE Dept., January 1974, AD 774-738

TR.118 Briabrin, Victor
An Abstract Model of a Research Institute: Simple Automatic
Programming Approach, March 1974, PB 231-505/AS

TR.119 Hammer, Michael M.
A New Grammatical Transformation into Deterministic Top-Down
Form, Ph.D. Dissertation, EE Dept., February 1974, AD 775-545

TR.120 Ramchandani, Chander
Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets, Ph.D. Dissertation, EE Dept.. February 1974, AD 775-618

320

PUBLICATIONS

TR-121 Yao, Foong F.
On Lower Bounds for Selection Problems, Ph.D. Dissertation,
Math. Dept., March 1974, PB 230-950/AS

TR-122 Scherf, John A.
Computer and Data Security: A Comprehensive Annotated
Bibliography, S.M. Thesis, Sloan School, January 1974, AD
775-546

TR-123 Introduction to Multics
February 1974, AD 918-562

TR- 124 Laventhal, Mark S.
Verification of F:ograms Operating on Structured Data, S.B. &
S.M. Thesis, EE Dept., March 1974, PB 231-365/AS

TR-125 Mark. William S.
A ModelDebugging System, S.B. & S.M. Thesis, EE Dept., April
1974, AD 778-688

TR-126 Altman, Vernon E.
A Language Implementation System, S.B. & S.M. Thesis, Sloan
School, May 1974, AD 780-672

TR-127 Greenberg. Bernard S.
An Experimental Analysis of Program Reference Patterns in the
Multics Virtual Memory, S.M. Thesis, EE Dept., May 1974, AD
780-407

TR-128 Frankston, Robert M.
The Computer Utility as a Marketplace for Computer Services,
S.M. & E.E. Thesis, EE Dept.. May 1974, AD 780-436

TR-129 Weissberg, Richard W.
Using Interactive Graphics in Simulating the Hospital Emergency
Room, S.M. Thesis, EE Dept., May 1974, AD 780-437

TR-130 Ruth, Gregory R.
Analysis of Algorithm Implementations, Ph.D. Dissertation, EE
Dept., May 1974, AD 780.408

TR-131 Levin, Michael
Mathematical Logic for Computer Scientists, June 1974.

321

PUBLICATIONS

TR-132 Janson, Philippe A.
Removing the Dynamic Linker from the Security Kernel of a
Computing Utility, S.M. Thesis, EE Dept., June 1974, AD 781-305

TR-133 Stockmeyer, Larry J.
The Complexity of Decision Problems in Automata Theory and
Logic, Ph.D. Dissertation, EE Dept., July 1974, PB 235-283/AS

TR-134 Ellis, David J.
Semantics of Data Structures and References, S.M. & E.E.
Thesis, EE Dept., August 1974, PB 236-594/AS

TR-135 Pfister, Gregory F.
The Computer Control of Changing Pictures, Ph.D. Dissertation,
EE Dept., September 1974, AD 787-795

TR-136 Ward, Stephen A.
Functional Domains of Applicative Languages, Ph.D.
Dissertation, EE Dept., September 1974, AD 787-796

TR- 137 Seiferas, Joel I.
Nondeterministic Time and Space Complexity Classes, Ph.D.
Dissertation, Math. Dept., September 1974.
PB 236-777/AS

TR.138 Yun, David Y. Y.
The Hensel Lemma in Algebraic Manipulation, Ph.D.
Dissertation, Math. Dept., November 1974, AD A002.737

TR. 139 Ferrante, Jeanne
Some Upper and Lower Bounds on Decision Procedures in
Logic, Ph.D. Dissertation, Math, Dept., November 1974.
PB 238.121/AS

TR-140 Redell, David D.
Naming and Protection in Extendable Operating Systems, Ph.D.
Dissertation, EE Dept., November 1974, AD A001 -721

TR-141 Richards, Martin, A. Evans and R. Mabee
The BCPL Reference Manual, December 1974, AD A003-599

TR-142 Brown, Gretchen P.
Some Problems in German to English Machine Translation, S.M.
& E.E. Thesis, EE Dept., December 1974, AD A003002

322

PUBLICATIONS

IR -143 Silverman, Howard
A Digitalis Therapy Advisor, S.M. Thesis, EE Dept., January 1975.

TR-144 Rackoff. Charles
The Computational Complexity of Some Logical Theories, Ph.D.
Dissertation, EE Dept., February 1975.

TR-145 Henderson, D. Austin
The Binding Model: A Semantic Base for Modular Programming
Systems, Ph.D. Dissertation, EE Dept., February 1975, AD
A006-961

TR- 146 Malhotra, Ashok
Design Criteria for a Knowledge-Based English Language
System for Management: An Experimental Analysis, Ph.D.
Dissertation, EE Dept., February 1975.

TR-147 Van De Vanter, Michael L.
A Formalization and Correctness Proof of the CGOL Language
System, S.M. Thesis, EE Dept., March 1975.

TR-148 Johnson, Jerry
Program Restructuring for Virtual Memory Systems, Ph.D.
Dissertation, EE Dept., March 1975, AD A009-218

TR-149 Snyder, Alan
A Portable Compiler for the Language C, S.B. & S.M. Thesis, EE
Dept., May 1975, AD AO1O-218

TR 150 Rumbaugh, James E.
A Parallel Asynchronous Computer Architecture for Data Flow
Programs, Ph.D. Dissertation, EE Dept.. May 1975, AD A010-918

TR- 151 Manning, Frank B.
Automatic Test, Configuration, and Repair of Cellular Arrays,
Ph.D. Dissertation, FE Dept., June 1975, AD A012-822

TR- 152 Qualitz, Joseph E.
Equivalence Problems for Monadic Schemas, Ph.D. Dissertation,
EE Dept., June 1975, AD A01 2.823

TR-153 Miller, Peter B.
Strategy Selection in Medical Diagnosis, S.M. Thesis, EE & CS
Dept., September 1975.

323

PUBLICATIONS

TR-154 Greif, Irene
Semantics of Communicating Parallel Processes, Ph.D.
Dissertation, EE & CS Dept., September 1975, AD A016-302

TR-155 Kahn, Kenneth M.
Mechanization of Temporal Knowledge, S.M. Thesis, EE & CS
Dept., September 1975.

TR-156 Bratt, Richard G.
Minimizing the Naming Facilities Requiring Protection in a
Computer Utility, S.M. Thesis, EE & CS Dept., September 1975.

TR-157 Meldman, Jeffrey A.
A Preliminary Study in Computer-Aided Legal Analysis, Ph.D.
Dissertation, EE & CS Dept., November 1975, AD A018-997

TR-158 Grossman, Richard W.
Some Data-base Applications of Constraint Expressions, S.M.
Thesis, EE & CS Dept., February 1976, AD A024-149

TR-159 Hack, Michel
Petri Net Languages, March 1976.

TR-160 Bosyj, Michael
A Program for the Design of Procurement Systems, S.M. Thesis,
EE & CS Dept., May 1976, AD A026-688

TR-161 Hack, Michel
Decidability Questions, Ph.D. Dissertation, EE & CS Dept., June
1976.

TR-162 Kent, Stephen T.
Encryption-Based Protection Protocols for Interactive User-
Computer Communication, S.M. Thesis, EE & CS Dept., June
1976, AD A026-911

TR-163 Montgomery, Warren A.
A Secure and Flexible Model of Process Initiation for a Computer
Utility, S.M. & E.E. Thesis, EE & CS Dept., June 1976.

TR-164 Reed, David P.
Processor Multiplexing in a Layered Operating System, S.M.
Thesis, EE & CS Dept., July 1976.

324

PUBLICATIONS

TR-165 McLeod, Dennis J.
High Level Expression of Semantic Integrity Specifications in a
Relational Data Base System, S.M. Thesis, EE & CS Dept.,
September 1976, AD A034-184

TR-166 Chan, Arvola Y.
Index Selection in a Self-Adaptive Relational Data Base
Management System, S.M. Thesis, EE & CS Dept., September
1976, AD A034-185

TR-167 Janson, Philippe A.
Using Type Extension to Organize Virtual Memory Mechanisms,
Ph.D. Dissertation, EE & CS Dept., September 1976.

TR-168 Pratt, Vaughan R.
Semantical Considerations on Floyd-Hoare Logic, September
1976.

TR-169 Safran, Charles, James F. Desforges and Philip N. Tsichlis
Diagnostic Planning and Cancer Management, September 1976.

TR-170 Furtek, Frederick C.
The Logic of Systems, Ph.D. Dissertation, EE & CS Dept.,
December 1976.

TR-171 Huber, Andrew R.
A Multi-Process Design of a Paging System, S.M. & E.E. Thesis,
EE & CS Dept., December 1976.

TR-172 Mark, William S.
The Reformulation Model of Expertise, Ph.D. Dissertation, EE &
CS Dept., December 1976, AD A035-397

TR-173 Goodman, Nathan
Coordination of Parallel Processes in the Actor Model of
Computation, S.M. Thesis, EE & CS Dept., December 1976.

TR-174 Hunt, Douglas H.
A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem, S.M. & E.E. Thesis, EE & CS Dept., December 1976.

TR-175 Goldberg, Harold J.
A Robust Environment for Program Development, S.M. Thesis,
EE & CS Dept., February 1977.

325

PUBLICATIONS d

TR.176 Swartout, William R.
A Digitalis Therapy Advisor with Explanations, S.M. Thesis, EE &
CS Dept., February 1977.

TR-177 Mason, Andrew H.
A Layered Virtual Memory Manager, S.M. & E.E. Thesis, EE & CS
Dept., May 1977.

TR-178 Bishop, Peter B.
Computer Systems with a Very Large Address Space and
Garbage Collection, Ph.D. Dissertation, EE & CS Dept., May
1977, AD A040-601

TR-179 Karger, Paul A.
Non-Discretionary Access Control for Decentralized Computing
Systems, S.M. Thesis, EE & CS Dept., May 1977, AD A040-804

TR-180 Luniewski, Allen W.
A Simple and Flexible System Initialization Mechanism, S.M. &
E.E. Thesis, EE & CS Dept., May 1977.

TR-181 Mayr, Ernst W.
The Complexity of the Finite Containment Problem for Petri Nets,
S.M. Thesis, EE & CS Dept., June 1977.

TR-182 Brown, Gretchen P.
A Framework for Processing Dialogue, June 1977, AD A042-370

TR. 183 Jaffe, Jeffrey M.
Semilinear Sets and Applications, S.M. Thesis, EE & CS Dept.,
July 1977.

TR-184 Levine. Paul H.
Facilitating Interprocess Communication in a Heterogeneous
Network Environment, S.B. & SM. Thesis, EE & CS Dept., July
1977, AD A043-901

TR. 185 Goldman, Barry
Deadlock Detection in Computer Networks, S.B. & S.M. Thesis,
EE & CS Dept., September 1977, AD A047-025

TR- 186 Ackerman. William B.

A Structure Memory for Data Flow Computers, S.M. Thesis, EE &
CS Dept., September 1977, AD A047-026

32C

PUBLICATIONS

TR-187 Long, William J.
A Program Writer, Ph.D. Dissertation, EE & CS Dept., November
1977, AD A047-595

TR-188 Bryant, Randal E.
Simulation of Packet Communication Architecture Computer
Systems, S.M. Thesis, EE & CS Dept., November 1977, AD
A048-290

TR -189 Ellis, David J.
Formal Specifications for Packet Communication Systems, Ph.D.
Dissertation, EE & CS Dept., November 1977, AD A048-980

TR-190 Moss, J Eliot B.
Abstract Data Types in Stack Based Languages, S.M. Thesis, EE
& CS Dept., February 1978, AD A052-332

TR.191 Yonezawa, Akinori
Specification and Verification Techniques for Parallel Programs
Based on Message Passing Semantics, Ph.D. Dissertation, EE &
CS Dept., January 1978, AD A051-149

TR-192 Niamir, Bahram
Attribute Partitioning in a Self-Adaptive Relational Database

System, S.M. Thesis, EE & CS Dept., January 1978, AD A053-292

TR-193 Schaffert, J. Craig
A Formal Definition of CLU, S.M. Thesis, EE & CS Dept., January
1978

TR.194 Hewitt, Carl and Henry Baker, Jr.
Actors and Continuous Functionals, February 1978, AD
A052-266

TR-195 Bruss, Anna R.
On Time-Space Classes and Their Relation to the Theory of Real
Addition, S.M. Thesis, EE & CS Dept., March 1978

TR.196 Schroeder, Michael D., David D. Clark, Jerome H. Saltzer and
Douglas H. Wells
Final Report of the Multics Kernel Design Project, March 1978

TR-197 Baker, Henry Jr.
Actor Systems for Real Time Computation. Ph.D. Dissertation,
EE & CS Dept.. March 1978, AD A053 328

.327

PUBLICATIONS

TR-198 Halstead. Robert H., Jr.
Multiple-Processor Implementation of Message-Passing
Systems, S.M. Thesis. EE & CS Dept., April 1978, AD A054-009

TR-199 Terman, Christopher J.
The Specification of Code Generation Algorithms, S.M. Thesis,
EE & CS Dept., April 1978, AD A054-301

TR-200 Harel, David
Logics of Programs: Axiomatics and Descriptive Power, Ph.D.
Dissertation, EE & CS Dept., May 1978

TR-201 Scheifler, Robert W.
A Denotational Semantics of CLU, S.M. Thesis, EE & CS Dept.,
June 1978

TR202 Principato, Robert N., Jr.
A Formalization of the State Machine Specification Technique,
S.M. & E.E. Thesis, EE & CS Dept., July 1978

TR-203 Laventhal, Mark S.
Synthesis of Synchronization Code for Data Abstractions, Ph.D.
Dissertation, EE & CS Dept., July 1978, AD A058-232

TR-204 Teixeira, Thomas J.
Real-Time Control Structures for Block Diagram Schemata, S.M.
Thesis, EE & CS Dept., August 1978, AD A061-122

TR-205 Reed, David P.
Naming and Synchronization in a Decentralized Computer
System, Ph.D. Dissertation, EE & CS Dept., October 1978, AD
A061.407

TR-206 Borkin, Sheldon A.
Equivalence Properties of Semantic Data Models for Database
Systems, Ph.D. Dissertation, EE & CS Dept., January 1979, AD
A066.38e

TR-207 Montgomery, Warren A.
Robust Concurrency Control for a Distributed Information
System, Ph.D. Dissertation, EE & CS Dept., January 1979, AD
A066-996

328

PUBLICATIONS

TR-208 Krizan, Brock C.
A Minicomputer Network Simulation System, S.B. & S.M. Thesis,
EE & CS Dept., February 1979

TR-209 Snyder, Alan
A Machine Architecture to Support an Object-Oriented
Language, Ph.D. Dissertation, EE & CS Dept., March 1979, AD
A068-111

TR-210 Papadimitriou, Christos H.
Serializability of Concurrent Database Updates, March 1979

TR-211 Bloom, Toby
Synchionization Mechanisms for Modular Programming
Languages, S.M. Thesis, EE & CS Dept., April 1979, AD A069-819

TR-212 Rabin, Michael 0.
Digitalized Signatures and Public-Key Functions as Intractable
as Factorization, March 1979

TR-213 Rabin, Michael 0.
Probabilistic Algorithms in Finite Fields, March 1979

TR.214 McLeod, Dennis
A Semantic Data Base Model and Its Associated Structured User
Interface, Ph.D. Dissertation, EE & CS Dept.. March 1979, AD
A068-112

TR-215 Svobodova, Liba, Barbara Liskov and David Clark
Distributed Computer Systems: Structure and Semantics, April
1979, AD A070-286

TR-216 Myers, John M.
Analysis of the SIMPLE Code for Dataflow Computation, June
1979

TR-217 Brown, Donna J.
Storage and Access Costs for Implementations of Variable -
Length Lists, Ph.D. Dissertation, EE & CS Dept., June 1979

TR-218 Ackerman, William B. and Jack B. Dennis
VAL--A Value-Oriented Algorithmic Language: Preliminary
Reference Manual, June 1979, AD A072-394

329

PUBLICATIONS

TR-219 Sollins, Karen R.
Copying Complex Structures in a Distributed System, S.M.
Thesis, EE & CS Dept., July 1979, AD A072-441

TR-220 Kosinski, Paul R.
Denotational Semantics of Determinate and Non-Determinate
Data Flow Programs, Ph.D. Dissertation, EE & CS Dept., July
1979

TR-221 Berzins, Valdis A.
Abstract Model Specifications for Data Abstractions, Ph.D.
Dissertation, EE & CS Dept., July 1979

TR-222 Halstead, Robcrt H., Jr.
Reference Tree Networks: Virtual Machine and Implementation,
Ph.D. Dissertation, EE & CS Dept., September 1979, AD
A016-570

TR-223 Frown. Gretchen P.
l'oward a Computational Theory of Indirect Speech Acts,
October 1979, AD A077-065

TR-224 Isaman, David L.
Data-Structuring Operations in Concurrent Computations, Ph.D.
Dissertation, EE & CS Dept., October 1979

TR-225 Liskov. Barbara, Russ Atkinson, Toby Bloom, Eliot Moss, Craig
Schaffert, Bob Scheifler and Alan Snyder
CLU Reference Manual, October 1979, AD A077-018

TR-226 Reuveni, Asher
The Event Based Language and Its Multiple Processor

Implementations, Ph.D. Dissertation, EE & CS Dept., January
1980, AD A081-950

TR-227 Rosenberg, Ronni L.
Incomprehensible Computer Systems: Knowledge Without
Wisdom, S.M. Thesis, EE & CS Dept,, January 1980

TR-228 Weng, Kung-Song
An Abstract Implementation for a Generalized Data Flow
Language, Ph.D. Dissertation, EE & CS Dept., January 1980

330

.

PUBLICATIONS

TR-229 Atkinson, Russell R.
Automatic Verification of Serializers, Ph.D. Dissertation, EE & CS
Dept., March 1980, AD A082-885

TR-230 Baratz, Alan E.
The Complexity of the Maximum Network Flow Problem, S.M.
Thesis, EE & CS Dept., March 1980

TR-231 Jaffe, Jeffrey M.
Parallel Computation: Synchronization, Scheduling, and
Schemes, Ph.D. Dissertation, EE & CS Dept., March 1980

TR-232 Luniewski, Allen W.
The Architecture of an Object Based Personal Computer, Ph.D.
Dissertation, EE & CS Dept., March 1980, AD A083-433

TR-233 Kaiser, Gail E.
Automatic Extension of an Augmented Transition Network
Grammar for Morse Code Conversations, S.B. Thesis, EE & CS
Dept., April 1980, AD A084.411

TR-234 Herlihy, Maurice P. TRansmitting Abstract Values in Messages,
S.M. Thesis, EE & CS Dept., May 1980, AD A086-984

TR-235 Levin, Leonid A.
A Concept of Independence with Applications in Various Fields
of Mathematics, May 1980

TR-236 Lloyd, Errol L.
Scheduling Task Systems with Resources, Ph.D. Dissertation, EE
& CS Dept., May 1980

TR-237 Kapur, Deepak
Towards a Theory for Abstract Data Types, Ph.D. Dissertation,
EE & CS Dept., June 1980, AD A085-877

TR-238 Bloniarz, Peter A.
The Complexity of Monotone Boolean Functions and an
Algorithm for Finding Shortest Paths in a Graph, Ph.D.
Dissertation, EE & CS Dept., June 1980

TR-239 Baker, Clark M.
Artwork Analysis Tools for VLSI Circuits, S.M. & E.E. Thesis, EE
& CS Dept., June 1980, AD A087-040

331

PUBLICATIONS

TR-240 Montz, Lynn B.
Safety and Optimization Transformations for Data Flow
Programs, S.M. Thesis, EE & CS Dept., July 1980

TR-241 Archer, Rowland F., Jr.
Representation and Analysis of Real-Time Control Structures,
S.M. Thesis, EE & CS Dept., August 1980, AD A089-828

TR-242 Loui, Michael C.
Simulations Arr0,ng Multidimensional Turing Machines, Ph.D.
Dissertation, EE & CS Dept., August 1980

TR-243 Svobodova, Liba
Management of Object Histories in the Swallow Repository,
August 1980, AD A089-836

TR-244 Ruth, Gregory R.
Data Driven Loops, August 1980

TR-245 Church, Kenneth W.
On Memory Limitations in Natural Language Processing, S.M.
Thesis, EE & CS Dept., September 1980

TR-246 Tiuryn, Jerzy
A Survey of the Logic of Effective Definitions, October 1980

TR-247 Weihl, William E.
Interprocedural Data Flow Analysis in the Presence of Pointers,
Procedure Variables, and Label Variables, S.B.& S.M.Thesis, EE
& CS Dept., October 1980

TR-248 LaPaugh, Andrea S.
Algorithms for Integrated Circuit Layout: An Analytic Approach,
Ph.D.Dissertation, EE & CS Dept., November 1980

TR-249 Turkle, Sherry
Computers and People: Personal Computation, December 1980

TR-250 Leung, Clement Kin Cho
Fault Tolerance in Packet Communication Computer
Architectures, Ph.D. Dissertation, EE & CS Dept., December
1980

332

PUBLICATIONS

TR-251 Swartout, William R.
Producing Explanations and Justifications of Expert Consulting
Programs, Ph.D. Dissertation, EE & CS Dept., January 1981

TR-252 Arens, Gail C.
Recovery of the Swallow Repository, S.M. Thesis, EE & CS Dept.,
January 1981, AD A096-374

TR-253 Ilson, Richard
An Integrated Approach to Formatted Document Production,
S.M. Thesis, EE & CS Dept., February 1981

TR-254 Ruth, Gregory, Steve Alter and William Martin
A Very High Level Language for Business Data Processing,
March 1981

TR-255 Kent, Stephen T.
Protecting Externally Supplied Software in Small Computers,
Ph.D. Dissertation, EE & CS Dept., March 1981

TR-256 Faust, Gregory G.
Semiautomatic Translation of COBOL into HIBOL, S.M. Thesis,
EE & CS Dept., April 1981

TR-257 Cisari, C.
Application of Data Flow Architecture to Computer Music
Synthesis, S.B./S.M. Thesis, EE & CS Dept., February 1981

TR.258 Singh, N.
A Design Methodology for Self-Timed Systems, S.M. Thesis, EE &
CS Dept., February 1981

TR-259 Bryant, R.E.
A Switch-Level Simulation Model for Integrated Logic Circuits,
Ph.D. Dissertation, EE & CS Dept., March 1981

TR-260 Moss, E.B.
Nested Transactions: An Approach to Reliable Distributed
Computing, Ph.D. Dissertation, EE & CS Dept., April 1981

TR-261 Martin, W.A., Church, K.W., Patil, R.S.
Preliminary Analysis of a Breadth-First Parsing Algorithm:
Theoretical and Experimental Results, EE & CS Dept., June 1981

333 I

PUBLICATIONS

TR-262 Todd, K.W.
High Level Val Constructs in a Static Data Flow Machine, S.M.
Thesis, EE & CS Dept., June 1981

TR-263 Street, R.S.
Propositional Dynamic Logic of Looping and Converse, Ph.D.
Dissertation, EE & CS Dept., May 1981

TR-264 Schiffenbauer, R.D.
Interactive Debugging in a Distributed Computational
Environment, S.M. Thesis, EE & CS Dept., August 1981

TR.265 Thomas, R.E.
A Data Flow Architecture with Improved Asymptotic
Performance, Ph.D. Dissertation, EE & CS Dept., April 1981

TR-266 Good, M.
An Ease of Use Evaluation of an Integrated Editor and Formatter,
S.M. Thesis, EE & CS Dept., August 1981

TR-267 Patil, R.S.
Causal Representation of Patient Illness for Electrolyte and Acid-
Base Diagnosis, Ph.D. Dissertation, EE & CS Dept., October 1981

TR-268 Guttag, J.V., Kapur, D., Musser, D.R.
Derived Pairs, Overlap Closures, and Rewrite Dominoes: New
Tools for Analyzing Term Rewriting Systems, EE & CS Dept.,
December 1981

TR-269 Kanellakis, P.C.
The Complexity of Concurrency Control for Distributed Data
Bases, Ph.D. Dissertation, EE & CS Dept., December 1981

TR-270 Singh, V.
The Design of a Routing Service for Campus-Wide Internet
Transport, S.M. Thesis, EE & CS Dept., January 1982

TR-271 Rutherford, C.J., Davies, B., Barnett, A.I., Desforges, J.F.
A Computer System for Decision Analysis in Hodgkins Disease,
EE & CS Dept., February 1982

TR.272 Smith, B.C.
Reflection and Semantics in a Procedural Language, Ph.D.
Dissertation, EE & CS Dept., January 1982

334

PUBLICATIONS

TR-273 Estrin, D.L.
Data Communications via Cable Television Networks: Technical
and Policy Considerations, S.M. Thesis, EE & CS Dept., May 1982

TR-274 Leighton, F.T.
Layouts for the Shuffle-Exchange Graph and Lower Bound
Techniques for VLSI, Ph.D. Dissertation, EE & CS Dept., August
1981

TR-275 Kunin, J.S.
Analysis and Specification of Office Procedures, Ph.D.
Dissertation, EE & CS Dept., February 1982

TR-276 Srivas, M.K.
Automatic Synthesis of Implementations for Abstract Data Types
from Algebraic Specifications, Ph.D. Dissertation, EE & CS Dept.,
June 1982

TR-277 Johnson, M.G.
Efficient Modeling for Short Channel Mos Circuit Simulation,
S.M. Thesis, EE & CS Dept., August 1982

TR-278 Rosenstein, L.S.
Display Management in an Integrated Office, S.M. Thesis, EE &
CS Dept., January 1982

TR-279 Anderson, T.L.
The Design of a Multiprocessor Development System, S.M.
Thesis, EE & CS Dept., September 1982

TR-280 Guang-Rong, G.
An Implementation Scheme for Array Operations in Static Data
Flow Computers, S.M. Thesis, EE & CS Dept., May 1982

TR-281 Lynch, N.A.
Multilevel Atomicity - A New Correctness Criterion for Data Base
Concurrency Control, EE & CS Dept., August 1982

TR-282 Fischer, M.J., Lynch, N.A., Paterson, M.S.
Impossibility of Distributed Consensus with One Faulty Process,
EE & CS Dept., September 1982

335

PUBLICATIONS

TR-283 Sherman, H.B.
A Comparative Study of Computer-Aided Clinical Diagnosis, SM.
Thesis, EE & CS Dept., January 1981

TR-284 Cosmadakis, S.S.
Translating Updates of Relational Data Base Views, S.M. Thesis,
EE & CS Dept., February 1983

TR-285 Lynch, N.A.
Concurrency Control for Resilient Nested Transactions, EE & CS
Dept., February 1983

TR-286 Goree, J.A.
Internal Consistency of a Distributed Transaction System with
Orphan Detection, S.M. Thesis, EE & CS Dept., January 1983

TR-287 Bui, T.N.
On Bisecting Random Graphs, S.M. Thesis, EE & CS Dept.,
March 1983

TR-288 Landau, S.E.
On Computing Galois Groups and its Application to Solvability by
Radicals, Ph.D. Dissertation, EE & CS Dept., March 1983

TR-289 Sirbu, M., Schoichet, S.R., Kunin, J.S., Hammer, M.M.,
Sutherland, J.B., Zarmer, C.L.
Office Analysis: Methodology and Case Studies, EE & CS Dept.,
March 1983

TR-290 Sutherland, J.B.
An Office Analysis and Diagnosis Methodology, S.M. Thesis, EE
& CS Dept., March 1983

TR-291 Pinter, R.Y.
The Impact of Layer Assignment Methods on Layout Algorithms
for Integrated Circuits, Ph.D. Dissertation, EE & CS Dept., August
1982

TR-292 Dornbrook, M., Blank, M.
The MDL Programming Language Primer, EE A CS Dept., June
1980

TR-293 Galley, S.W., Pfister, G.
The MDL Programming Language, EE & CS Dept., May 1979

336

PUBLICATIONS

TR-294 Lebling, P.D.
The MDL Programming Environment, EE & CS Dept., May 1980

TR-295 Pitman, K.M.
The Revised Maclisp Manual, EE & CS Dept., June 1983

TR-296 Church, K.W.
Phrase-Structure Parsing: A Method for Taking Advantage of
Allophonic Constraints, Ph.D. Dissertation, EE & CS Dept., June
1983

TR-297 Mok, A.K.
Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment, Ph.D. Dissertation, EE & CS Dept.,
June 1983

TR-298 Krugler, K.
Video Games and Computer Aided Instruction, EE & CS Dept.,
June 1983

TR-299 Wing, J. A Two Tiered Approach to Specifying Programs, June
1983

TR-300 Cooper, G. An Argument for Soft Layering of Protocols, May
1983

TR-301 Valente, J.A. Creating a Computer-based Learning Environment
for Physically Handicapped Children, Ph.D. Dissertation, EE &
CS Dept., September 1983

TR-302 Arvind, Dertouzos, M.L. and lannucci, R.A. A Multiprocessor
Emulation Facility, October 1983

TR-303 Bloom T. Dynamic Module Replacement in a Distributed
Programming System, Ph.D. Dissertation, EE & CS Dept.,
September 1983

TR.304 Terman, C.J. Simulation Tools for Digital LSI Design, Ph.D.
Dissertation, EE & CS Dept., September 1983

TR-305 Bhatt, S.N. and Leighton, F.T. A Framework for Solving VLSI
Graph Layout Problems, Ph.D. Dissertation, EE & CS Dept.,
October 1983

TR-306 Leung, K.C. and Lim, W. Y-P. PADL . A Packet Architecture

337

PUBLICATIONS

Description Language: A Preliminary Reference Manual,
October 1983

TR-307 Guttag, J.V. and Horning, J.J. Preliminary Report on the Larch
Shared Language, October 1983

TR-308 Oki, B.M. Reliable Object Storage to Support Atomic Actions,
M.S. Thesis, EE & CS Dept., November 1983

TR-309 Brock, J.D. A Formal Model of Non-determinate Dataflow

Computation, Ph.D. Dissertation, EE & CS Dept., November 1983

TR-310 Granville, R. Cohesion in Computer Text Generation: Lexical
Substitution, M.S. Thesis, EE & CS Dept., December 1983

TR-311 Burke, G.G., Carrette, G.J. and Eliot, C.R. NIL Reference
Manual, M.S. Thesis, EE & CS Dept., December 1983

TR-312 Landcaster, J. Naming in a Programming Support Environment,
M.S. Thesis, EE & CS Dept., April 1984

TR-313 Koile, K. The Design and Implementation of an Online Directory
Assistance System, M.S. Thesis, EE & CS Dept., April 1984

rR-314 Weihl, W. Specification and Implementation of Atomic Data
Types, Ph.D. Dissertation, EE & CS Dept., April 1984

TR-315 Coan, B. and Turpin, R. Extending Binary Byzantine Agreement
to Multivalued Byzantine Agreement, April 1984

TR-316 Comer, M.H. Loose Consistency in a Personal Computer Mail
System, S.B. & M.S. Thesis, May 1984

TR 317 Traub, K.R. An Abstract Architecture for Parallel Graph
Reduction, S.B. Thesis, May 1984

338

PUBLICATIONS

Progress Reports

1. Project MAC Progress Report I, to July 1964, AD 465-088

2. Project MAC Progress Report II, July 1964-July 1965, AD 629-494

3. Project MAC Progress Report III, July 1965-July 1966, AD 648-346

4. Project Mac Progress Report IV, July 1966-July 1967, AD 681-342

5. Project MAC Progress Report V, July 1967-July 1968, AD 687-770

6. Project MAC Progress Report VI, July 1968-July 1969, AD 705-434

7. Project MAC Progress Report VII, July 1969-July 1970, AD 732-767

8. Project MAC Progress Report VIII, July 1970-July 1971, AD 735-148

9. Project MAC Progress Report IX, July 1971-July 1972, AD 756-689

10. Project MAC Progress Report X, July 1972-July 1973, AD 771-428

11. Project MAC Progress Report XI, July 1973-July 1974, AD A004-966

12. Laboratory for Computer Science Progress Report XII, July 1974-July
1975, AD A024-527

13. Laboratory for Computer Science Progress Report XIII, July 1975-July
1976, AD A061-246

14. Laboratory for Computer Science Progress Report XIV, July 1976-July
1977, AD A061-932

15. Laboratory for Computer Science Progress Report 15, July 1977 July
1978, AD A073-958

339

PUBLICATIONS

16. Laboratory for Computer Science Progress Report 16, July 1978-July
1979, AD A088-355

17. Laboratory for Computer Science Progress Report 17, July 1979-July
1980, AD A093-384

18. Laboratory for Computer Science Progress Report 18, July 1980-June
1981, A 127586

19. Laboratory for Computer Science Progress Report 19, July 1981-June
1982, A 143429

20. Laboratory for Computer Science Progress Report 20, July 1982-June
1983, A 145134

Copies of all reports with A, AD, or PB numbers listed in Publications may be
secured from the National Technical Information Service, U.S. Department of
Commerce, Reports Division, 5285 Port Royal Road, Springfield, Virginia 22161.
Prices vary. The reference number must be supplied with the request.

340

AT

wmMEI

